{"title":"A subcomponent-guided deep learning method for interpretable cancer drug response prediction.","authors":"Xuan Liu, Wen Zhang","doi":"10.1371/journal.pcbi.1011382","DOIUrl":null,"url":null,"abstract":"<p><p>Accurate prediction of cancer drug response (CDR) is a longstanding challenge in modern oncology that underpins personalized treatment. Current computational methods implement CDR prediction by modeling responses between entire drugs and cell lines, without the consideration that response outcomes may primarily attribute to a few finer-level 'subcomponents', such as privileged substructures of the drug or gene signatures of the cancer cell, thus producing predictions that are hard to explain. Herein, we present SubCDR, a subcomponent-guided deep learning method for interpretable CDR prediction, to recognize the most relevant subcomponents driving response outcomes. Technically, SubCDR is built upon a line of deep neural networks that enables a set of functional subcomponents to be extracted from each drug and cell line profile, and breaks the CDR prediction down to identifying pairwise interactions between subcomponents. Such a subcomponent interaction form can offer a traceable path to explicitly indicate which subcomponents contribute more to the response outcome. We verify the superiority of SubCDR over state-of-the-art CDR prediction methods through extensive computational experiments on the GDSC dataset. Crucially, we found many predicted cases that demonstrate the strength of SubCDR in finding the key subcomponents driving responses and exploiting these subcomponents to discover new therapeutic drugs. These results suggest that SubCDR will be highly useful for biomedical researchers, particularly in anti-cancer drug design.</p>","PeriodicalId":49688,"journal":{"name":"PLoS Computational Biology","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2023-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10470940/pdf/","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"PLoS Computational Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1371/journal.pcbi.1011382","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/8/1 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
Accurate prediction of cancer drug response (CDR) is a longstanding challenge in modern oncology that underpins personalized treatment. Current computational methods implement CDR prediction by modeling responses between entire drugs and cell lines, without the consideration that response outcomes may primarily attribute to a few finer-level 'subcomponents', such as privileged substructures of the drug or gene signatures of the cancer cell, thus producing predictions that are hard to explain. Herein, we present SubCDR, a subcomponent-guided deep learning method for interpretable CDR prediction, to recognize the most relevant subcomponents driving response outcomes. Technically, SubCDR is built upon a line of deep neural networks that enables a set of functional subcomponents to be extracted from each drug and cell line profile, and breaks the CDR prediction down to identifying pairwise interactions between subcomponents. Such a subcomponent interaction form can offer a traceable path to explicitly indicate which subcomponents contribute more to the response outcome. We verify the superiority of SubCDR over state-of-the-art CDR prediction methods through extensive computational experiments on the GDSC dataset. Crucially, we found many predicted cases that demonstrate the strength of SubCDR in finding the key subcomponents driving responses and exploiting these subcomponents to discover new therapeutic drugs. These results suggest that SubCDR will be highly useful for biomedical researchers, particularly in anti-cancer drug design.
期刊介绍:
PLOS Computational Biology features works of exceptional significance that further our understanding of living systems at all scales—from molecules and cells, to patient populations and ecosystems—through the application of computational methods. Readers include life and computational scientists, who can take the important findings presented here to the next level of discovery.
Research articles must be declared as belonging to a relevant section. More information about the sections can be found in the submission guidelines.
Research articles should model aspects of biological systems, demonstrate both methodological and scientific novelty, and provide profound new biological insights.
Generally, reliability and significance of biological discovery through computation should be validated and enriched by experimental studies. Inclusion of experimental validation is not required for publication, but should be referenced where possible. Inclusion of experimental validation of a modest biological discovery through computation does not render a manuscript suitable for PLOS Computational Biology.
Research articles specifically designated as Methods papers should describe outstanding methods of exceptional importance that have been shown, or have the promise to provide new biological insights. The method must already be widely adopted, or have the promise of wide adoption by a broad community of users. Enhancements to existing published methods will only be considered if those enhancements bring exceptional new capabilities.