{"title":"A Safer Path to Cellular Rejuvenation: Endogenous Oct4 Activation via CRISPR/dCas9 in Progeria Mouse Models.","authors":"Di Hu, Enora Le Borgne, Rico Meinl","doi":"10.1089/cell.2023.0057","DOIUrl":null,"url":null,"abstract":"<p><p>A recent study in <i>Aging Cell</i> showed that transcriptional activation of endogenous Oct4 using the CRISPR/dCas9 activator system is sufficient for cellular rejuvenation and extending the lifespan of a progeria mouse model. Although transient expression of reprogramming factors Oct4, Sox2, Klf4, and c-Myc (OSKM) has been shown to ameliorate age-related phenotypes <i>in vivo</i>, oncogenic risk, for example, from c-Myc, has raised safety concerns for its use in therapeutics. The authors demonstrated that transient activation of endogenous Oct4 expression restored age-related epigenetic patterns, suppressed expression of mutant progerin, and reduced vascular pathological features associated with the disease. At the same time, the transient Oct4 overexpression resulted in lower incidence of cancer transformation compared with constituent OSKM overexpression. Successful activation of endogenous Oct4 by CRISPR/dCas9 paves the way for novel therapeutic approaches for the treatment of progeria and age-related diseases, with potential implications for the broader field of cellular reprogramming-based rejuvenation.</p>","PeriodicalId":9708,"journal":{"name":"Cellular reprogramming","volume":null,"pages":null},"PeriodicalIF":1.2000,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cellular reprogramming","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1089/cell.2023.0057","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
A recent study in Aging Cell showed that transcriptional activation of endogenous Oct4 using the CRISPR/dCas9 activator system is sufficient for cellular rejuvenation and extending the lifespan of a progeria mouse model. Although transient expression of reprogramming factors Oct4, Sox2, Klf4, and c-Myc (OSKM) has been shown to ameliorate age-related phenotypes in vivo, oncogenic risk, for example, from c-Myc, has raised safety concerns for its use in therapeutics. The authors demonstrated that transient activation of endogenous Oct4 expression restored age-related epigenetic patterns, suppressed expression of mutant progerin, and reduced vascular pathological features associated with the disease. At the same time, the transient Oct4 overexpression resulted in lower incidence of cancer transformation compared with constituent OSKM overexpression. Successful activation of endogenous Oct4 by CRISPR/dCas9 paves the way for novel therapeutic approaches for the treatment of progeria and age-related diseases, with potential implications for the broader field of cellular reprogramming-based rejuvenation.
期刊介绍:
Cellular Reprogramming is the premier journal dedicated to providing new insights on the etiology, development, and potential treatment of various diseases through reprogramming cellular mechanisms. The Journal delivers information on cutting-edge techniques and the latest high-quality research and discoveries that are transforming biomedical research.
Cellular Reprogramming coverage includes:
Somatic cell nuclear transfer and reprogramming in early embryos
Embryonic stem cells
Nuclear transfer stem cells (stem cells derived from nuclear transfer embryos)
Generation of induced pluripotent stem (iPS) cells and/or potential for cell-based therapies
Epigenetics
Adult stem cells and pluripotency.