{"title":"MRD and Plasma Cell Dynamics after CAR T-cell Therapy in Myeloma.","authors":"Ola Landgren, Dickran Kazandjian","doi":"10.1158/2643-3230.BCD-23-0134","DOIUrl":null,"url":null,"abstract":"<p><strong>Summary: </strong>In this issue, Paiva and colleagues characterize the dynamics of minimal residual disease (MRD) and clinical responses during chimeric antigen receptor (CAR) T-cell therapy of relapsed/refractory multiple myeloma. Although both correlate with prolonged progression-free survival, MRD is reached faster in the bone marrow than complete response in peripheral blood; consequently, the study addresses the need for future guidelines to explore new MRD-negative definitions that are independent of the monoclonal (M) protein to overcome this limitation, particularly in clinical trials using early depth of response as an endpoint. See related article by Paiva et al., p. 365 (1).</p>","PeriodicalId":29944,"journal":{"name":"Blood Cancer Discovery","volume":null,"pages":null},"PeriodicalIF":11.5000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10472185/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Blood Cancer Discovery","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1158/2643-3230.BCD-23-0134","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"HEMATOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Summary: In this issue, Paiva and colleagues characterize the dynamics of minimal residual disease (MRD) and clinical responses during chimeric antigen receptor (CAR) T-cell therapy of relapsed/refractory multiple myeloma. Although both correlate with prolonged progression-free survival, MRD is reached faster in the bone marrow than complete response in peripheral blood; consequently, the study addresses the need for future guidelines to explore new MRD-negative definitions that are independent of the monoclonal (M) protein to overcome this limitation, particularly in clinical trials using early depth of response as an endpoint. See related article by Paiva et al., p. 365 (1).
期刊介绍:
The journal Blood Cancer Discovery publishes high-quality Research Articles and Briefs that focus on major advances in basic, translational, and clinical research of leukemia, lymphoma, myeloma, and associated diseases. The topics covered include molecular and cellular features of pathogenesis, therapy response and relapse, transcriptional circuits, stem cells, differentiation, microenvironment, metabolism, immunity, mutagenesis, and clonal evolution. These subjects are investigated in both animal disease models and high-dimensional clinical data landscapes.
The journal also welcomes submissions on new pharmacological, biological, and living cell therapies, as well as new diagnostic tools. They are interested in prognostic, diagnostic, and pharmacodynamic biomarkers, and computational and machine learning approaches to personalized medicine. The scope of submissions ranges from preclinical proof of concept to clinical trials and real-world evidence.
Blood Cancer Discovery serves as a forum for diverse ideas that shape future research directions in hematooncology. In addition to Research Articles and Briefs, the journal also publishes Reviews, Perspectives, and Commentaries on topics of broad interest in the field.