Kaleb Burch, Sagar Doshi, Amit Chaudhari, Erik Thostenson, Jill Higginson
{"title":"Estimating ground reaction force with novel carbon nanotube-based textile insole pressure sensors.","authors":"Kaleb Burch, Sagar Doshi, Amit Chaudhari, Erik Thostenson, Jill Higginson","doi":"10.1017/wtc.2023.2","DOIUrl":null,"url":null,"abstract":"<p><p>This study presents a new wearable insole pressure sensor (IPS), composed of fabric coated in a carbon nanotube-based composite thin film, and validates its use for quantifying ground reaction forces (GRFs) during human walking. Healthy young adults (<i>n</i> = 7) walked on a treadmill at three different speeds while data were recorded simultaneously from the IPS and a force plate (FP). The IPS was compared against the FP by evaluating differences between the two instruments under two different assessments: (1) comparing the two peak forces at weight acceptance and push-off (2PK) and (2) comparing the absolute maximum (MAX) of each gait cycle. Agreement between the two systems was evaluated using the Bland-Altman method. For the 2PK assessment, the group mean of differences (MoD) was -1.3 ± 4.3% body weight (BW) and the distance between the MoD and the limits of agreement (2S) was 25.4 ± 11.1% BW. For the MAX assessment, the average MoD across subjects was 1.9 ± 3.0% BW, and 2S was 15.8 ± 9.3% BW. The results of this study show that this sensor technology can be used to obtain accurate measurements of peak walking forces with a basic calibration and consequently open new opportunities to monitor GRF outside of the laboratory.</p>","PeriodicalId":75318,"journal":{"name":"Wearable technologies","volume":null,"pages":null},"PeriodicalIF":3.4000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10062471/pdf/","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Wearable technologies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1017/wtc.2023.2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 5
Abstract
This study presents a new wearable insole pressure sensor (IPS), composed of fabric coated in a carbon nanotube-based composite thin film, and validates its use for quantifying ground reaction forces (GRFs) during human walking. Healthy young adults (n = 7) walked on a treadmill at three different speeds while data were recorded simultaneously from the IPS and a force plate (FP). The IPS was compared against the FP by evaluating differences between the two instruments under two different assessments: (1) comparing the two peak forces at weight acceptance and push-off (2PK) and (2) comparing the absolute maximum (MAX) of each gait cycle. Agreement between the two systems was evaluated using the Bland-Altman method. For the 2PK assessment, the group mean of differences (MoD) was -1.3 ± 4.3% body weight (BW) and the distance between the MoD and the limits of agreement (2S) was 25.4 ± 11.1% BW. For the MAX assessment, the average MoD across subjects was 1.9 ± 3.0% BW, and 2S was 15.8 ± 9.3% BW. The results of this study show that this sensor technology can be used to obtain accurate measurements of peak walking forces with a basic calibration and consequently open new opportunities to monitor GRF outside of the laboratory.