Potential Implications of Exercise Training on Pannexin Expression and Function.

IF 1.8 4区 医学 Q3 PERIPHERAL VASCULAR DISEASE Journal of Vascular Research Pub Date : 2023-01-01 Epub Date: 2022-11-10 DOI:10.1159/000527240
Brent Wakefield, Silvia Penuela
{"title":"Potential Implications of Exercise Training on Pannexin Expression and Function.","authors":"Brent Wakefield,&nbsp;Silvia Penuela","doi":"10.1159/000527240","DOIUrl":null,"url":null,"abstract":"<p><p>Pannexins (PANX1, 2, 3) are channel-forming glycoproteins that are expressed throughout the cardiovascular and musculoskeletal system. The canonical function of these proteins is to release nucleotides that act as purinergic signalling at the cell membrane or Ca2+ channels at the endoplasmic reticulum membrane. These two forms of signalling are essential for autocrine and paracrine signalling in health, and alterations in this signalling have been implicated in the pathogenesis of many diseases. Many musculoskeletal and cardiovascular diseases are largely the result of a lack of physical activity which causes altered gene expression. Considering exercise training has been shown to alter a wide array of gene expression in musculoskeletal tissues, understanding the interaction between exercise training, gene function and expression in relevant diseases is warranted. With regards to pannexins, multiple publications have shown that exercise training can influence pannexin expression and may influence the significance of its function in certain diseases. This review further discusses the potential interaction between exercise training and pannexin biology in relevant tissues and disease models. We propose that exercise training in relevant animal and human models will provide a more comprehensive understanding of the implications of pannexin biology in disease.</p>","PeriodicalId":17530,"journal":{"name":"Journal of Vascular Research","volume":"60 2","pages":"114-124"},"PeriodicalIF":1.8000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Vascular Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1159/000527240","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/11/10 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"PERIPHERAL VASCULAR DISEASE","Score":null,"Total":0}
引用次数: 1

Abstract

Pannexins (PANX1, 2, 3) are channel-forming glycoproteins that are expressed throughout the cardiovascular and musculoskeletal system. The canonical function of these proteins is to release nucleotides that act as purinergic signalling at the cell membrane or Ca2+ channels at the endoplasmic reticulum membrane. These two forms of signalling are essential for autocrine and paracrine signalling in health, and alterations in this signalling have been implicated in the pathogenesis of many diseases. Many musculoskeletal and cardiovascular diseases are largely the result of a lack of physical activity which causes altered gene expression. Considering exercise training has been shown to alter a wide array of gene expression in musculoskeletal tissues, understanding the interaction between exercise training, gene function and expression in relevant diseases is warranted. With regards to pannexins, multiple publications have shown that exercise training can influence pannexin expression and may influence the significance of its function in certain diseases. This review further discusses the potential interaction between exercise training and pannexin biology in relevant tissues and disease models. We propose that exercise training in relevant animal and human models will provide a more comprehensive understanding of the implications of pannexin biology in disease.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
运动训练对Pannexin表达和功能的潜在影响。
Pannexins(PANX1,2,3)是在整个心血管和肌肉骨骼系统中表达的通道形成糖蛋白。这些蛋白质的典型功能是释放核苷酸,这些核苷酸在细胞膜上充当嘌呤能信号传导或在内质网膜上充当Ca2+通道。这两种形式的信号传导对健康中的自分泌和旁分泌信号传导至关重要,这种信号传导的改变与许多疾病的发病机制有关。许多肌肉骨骼和心血管疾病在很大程度上是由于缺乏体育活动导致基因表达改变的结果。考虑到运动训练已被证明可以改变肌肉骨骼组织中的广泛基因表达,有必要了解运动训练、基因功能和相关疾病中表达之间的相互作用。关于pannexin,多项出版物表明,运动训练可以影响pannexin的表达,并可能影响其在某些疾病中的功能意义。这篇综述进一步讨论了运动训练与相关组织和疾病模型中血管紧张素生物学之间的潜在相互作用。我们提出,在相关动物和人类模型中进行运动训练将使我们更全面地了解pannexin生物学在疾病中的意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Vascular Research
Journal of Vascular Research 医学-生理学
CiteScore
3.40
自引率
0.00%
发文量
25
审稿时长
>12 weeks
期刊介绍: The ''Journal of Vascular Research'' publishes original articles and reviews of scientific excellence in vascular and microvascular biology, physiology and pathophysiology. The scope of the journal covers a broad spectrum of vascular and lymphatic research, including vascular structure, vascular function, haemodynamics, mechanics, cell signalling, intercellular communication, growth and differentiation. JVR''s ''Vascular Update'' series regularly presents state-of-the-art reviews on hot topics in vascular biology. Manuscript processing times are, consistent with stringent review, kept as short as possible due to electronic submission. All articles are published online first, ensuring rapid publication. The ''Journal of Vascular Research'' is the official journal of the European Society for Microcirculation. A biennial prize is awarded to the authors of the best paper published in the journal over the previous two years, thus encouraging young scientists working in the exciting field of vascular biology to publish their findings.
期刊最新文献
RIP3 augments neuroinflammation by facilitating neutrophil infiltration during an ischemic stroke. Characterising the Time Course of the Dilatory Response of Healthy Retinal Arteries during Flicker-Light Provocation. Perfusion staining methods for visualization of the intact microvascular networks in whole mount skeletal muscle preparations. Cerebral Cortical Vasodilation via Nicotinic Receptors by Heated Tobacco Product Aerosol Extract in Rats. Rivaroxaban as a protector of Oxidative Stress-induced Vascular Endothelial Glycocalyx Damage via The IQGAP1/PAR1-2/PI3K/Akt Pathway.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1