Thymus aging and immune reconstitution, progresses and challenges

IF 7.4 2区 医学 Q1 IMMUNOLOGY Seminars in Immunology Pub Date : 2023-08-31 DOI:10.1016/j.smim.2023.101837
Yue Ru Li , Juan Carlos Zúñiga-Pflücker
{"title":"Thymus aging and immune reconstitution, progresses and challenges","authors":"Yue Ru Li ,&nbsp;Juan Carlos Zúñiga-Pflücker","doi":"10.1016/j.smim.2023.101837","DOIUrl":null,"url":null,"abstract":"<div><p>Thymus is a primary lymphoid organ essential for the development of T lymphocytes. Age-related thymic involution is a prominent feature of immune senescence. The thymus undergoes rapid growth during fetal and neonatal development, peaks in size before puberty and then begins to undergo a decrease in cellularity with age. Dramatic changes occur with age-associated thymic involution. The most prominent features of thymic involution include: (i) epithelial structure disruption, (ii) adipogenesis, and (iii) thymocyte development arrest. There is a sex disparity in thymus aging. It is a multifactorial process controlled and regulated by a series of molecules, including the transcription factor FOXN1, fibroblast and keratinocyte growth factors (FGF and KGF, respectively), sex steroids, Notch signaling, WNT signaling, and microRNAs. Nevertheless, there is still no satisfactory evolutionary or physiological explanation for age-associated thymic involution, and understanding the precise mechanism(s) for thymus aging remains challenging. Sustained thymic regeneration has yet to be achieved by sex steroid ablation. Recent preclinical studies indicate that long-term thymic reconstitution can be achieved via adoptive transfer of <em>in vitro</em>-generated progenitor T (proT) cells, and improvements in the methods for the generation of human proT cells make this an attractive approach. Future clinical applications may rely on new applications integrating proT cells, cytokine support and sex-steroid inhibition treatments.</p></div>","PeriodicalId":49546,"journal":{"name":"Seminars in Immunology","volume":"70 ","pages":"Article 101837"},"PeriodicalIF":7.4000,"publicationDate":"2023-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Seminars in Immunology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1044532323001288","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Thymus is a primary lymphoid organ essential for the development of T lymphocytes. Age-related thymic involution is a prominent feature of immune senescence. The thymus undergoes rapid growth during fetal and neonatal development, peaks in size before puberty and then begins to undergo a decrease in cellularity with age. Dramatic changes occur with age-associated thymic involution. The most prominent features of thymic involution include: (i) epithelial structure disruption, (ii) adipogenesis, and (iii) thymocyte development arrest. There is a sex disparity in thymus aging. It is a multifactorial process controlled and regulated by a series of molecules, including the transcription factor FOXN1, fibroblast and keratinocyte growth factors (FGF and KGF, respectively), sex steroids, Notch signaling, WNT signaling, and microRNAs. Nevertheless, there is still no satisfactory evolutionary or physiological explanation for age-associated thymic involution, and understanding the precise mechanism(s) for thymus aging remains challenging. Sustained thymic regeneration has yet to be achieved by sex steroid ablation. Recent preclinical studies indicate that long-term thymic reconstitution can be achieved via adoptive transfer of in vitro-generated progenitor T (proT) cells, and improvements in the methods for the generation of human proT cells make this an attractive approach. Future clinical applications may rely on new applications integrating proT cells, cytokine support and sex-steroid inhibition treatments.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
胸腺老化与免疫重建、进展与挑战
胸腺是T淋巴细胞发育所必需的主要淋巴器官。与年龄相关的胸腺退化是免疫衰老的一个突出特征。胸腺在胎儿和新生儿发育过程中快速生长,在青春期前达到峰值,然后随着年龄的增长,细胞数量开始减少。与年龄相关的胸腺退化会发生显著变化。胸腺退化最显著的特征包括:(i)上皮结构破坏,(ii)脂肪生成,和(iii)胸腺细胞发育停滞。胸腺衰老存在性别差异。它是一个由一系列分子控制和调节的多因素过程,包括转录因子FOXN1、成纤维细胞和角质形成细胞生长因子(分别为FGF和KGF)、性类固醇、Notch信号、WNT信号和微小RNA。然而,对于与年龄相关的胸腺退化,仍然没有令人满意的进化或生理解释,理解胸腺衰老的确切机制仍然具有挑战性。持续的胸腺再生尚未通过性类固醇消融来实现。最近的临床前研究表明,通过过继转移体外产生的祖T细胞(proT)可以实现长期胸腺重建,而人类proT细胞产生方法的改进使这成为一种有吸引力的方法。未来的临床应用可能依赖于整合proT细胞、细胞因子支持和性类固醇抑制治疗的新应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Seminars in Immunology
Seminars in Immunology 医学-免疫学
CiteScore
11.40
自引率
1.30%
发文量
50
审稿时长
89 days
期刊介绍: Seminars in Immunology is a specialized review journal that serves as a valuable resource for scientists in the field of immunology. The journal's approach is thematic, with each issue dedicated to a specific topic of significant interest to immunologists. It covers a wide range of research areas, from the molecular and cellular foundations of the immune response to the potential for its manipulation, highlighting recent advancements in these areas. Each thematic issue is curated by a guest editor, who is recognized as an expert in the field internationally. The content of each issue typically includes six to eight authoritative invited reviews, which delve into various aspects of the chosen topic. The goal of these reviews is to provide a comprehensive, coherent, and engaging overview of the subject matter, ensuring that the information is presented in a timely manner to maintain its relevance. The journal's commitment to quality and timeliness is further supported by its inclusion in the Scopus database, which is a leading abstract and citation database of peer-reviewed literature. Being indexed in Scopus helps to ensure that the journal's content is accessible to a broad audience of researchers and professionals in immunology and related fields.
期刊最新文献
Complement regulation in tumor immune evasion Galectins and Host–Pathogen Interactions: The roles in viral infections The tissue glycome as regulator of immune activation and tolerance mediated by C-type lectins and Siglecs Editorial Board ABO blood groups and galectins: Implications in transfusion medicine and innate immunity
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1