Effects of zinc deficiency on the regeneration of olfactory epithelium in mice.

IF 2.8 4区 心理学 Q1 BEHAVIORAL SCIENCES Chemical Senses Pub Date : 2023-01-01 DOI:10.1093/chemse/bjad023
Hiroyuki Ikushima, Jun Suzuki, Tomotaka Hemmi, Ryoukichi Ikeda, Yuta Kobayashi, Nobuo Ohta, Yukio Katori
{"title":"Effects of zinc deficiency on the regeneration of olfactory epithelium in mice.","authors":"Hiroyuki Ikushima,&nbsp;Jun Suzuki,&nbsp;Tomotaka Hemmi,&nbsp;Ryoukichi Ikeda,&nbsp;Yuta Kobayashi,&nbsp;Nobuo Ohta,&nbsp;Yukio Katori","doi":"10.1093/chemse/bjad023","DOIUrl":null,"url":null,"abstract":"<p><p>The olfactory epithelium can regenerate after damage; however, the regeneration process is affected by various factors, such as viral infections, head trauma, and medications. Zinc is an essential trace element that has important roles in organ development, growth, and maturation. Zinc also helps regulate neurotransmission in the brain; nevertheless, its relationship with olfactory epithelium regeneration remains unclear. Therefore, we used a severe zinc deficiency mouse model to investigate the effects of zinc deficiency on olfactory epithelium regeneration. Male wild-type C57BL/6 mice were divided into zinc-deficient and control diet groups at the age of 4 weeks, and methimazole was administered at the age of 8 weeks to induce severe olfactory epithelium damage. We evaluated the olfactory epithelium before and 7, 14, and 28 days after methimazole administration by histologically analyzing paraffin sections. RNA sequencing was also performed at the age of 8 weeks before methimazole administration to examine changes in gene expression caused by zinc deficiency. In the zinc-deficient group, the regenerated olfactory epithelium thickness was decreased at all time points, and the numbers of Ki-67-positive, GAP43-positive, and olfactory marker protein-positive cells (i.e. proliferating cells, immature olfactory neurons, and mature olfactory neurons, respectively) failed to increase at some time points. Additionally, RNA sequencing revealed several changes in gene expression, such as a decrease in the expression of extracellular matrix-related genes and an increase in that of inflammatory response-related genes, in the zinc-deficient group. Therefore, zinc deficiency delays olfactory epithelium regeneration after damage in mice.</p>","PeriodicalId":9771,"journal":{"name":"Chemical Senses","volume":"48 ","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Senses","FirstCategoryId":"102","ListUrlMain":"https://doi.org/10.1093/chemse/bjad023","RegionNum":4,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BEHAVIORAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

The olfactory epithelium can regenerate after damage; however, the regeneration process is affected by various factors, such as viral infections, head trauma, and medications. Zinc is an essential trace element that has important roles in organ development, growth, and maturation. Zinc also helps regulate neurotransmission in the brain; nevertheless, its relationship with olfactory epithelium regeneration remains unclear. Therefore, we used a severe zinc deficiency mouse model to investigate the effects of zinc deficiency on olfactory epithelium regeneration. Male wild-type C57BL/6 mice were divided into zinc-deficient and control diet groups at the age of 4 weeks, and methimazole was administered at the age of 8 weeks to induce severe olfactory epithelium damage. We evaluated the olfactory epithelium before and 7, 14, and 28 days after methimazole administration by histologically analyzing paraffin sections. RNA sequencing was also performed at the age of 8 weeks before methimazole administration to examine changes in gene expression caused by zinc deficiency. In the zinc-deficient group, the regenerated olfactory epithelium thickness was decreased at all time points, and the numbers of Ki-67-positive, GAP43-positive, and olfactory marker protein-positive cells (i.e. proliferating cells, immature olfactory neurons, and mature olfactory neurons, respectively) failed to increase at some time points. Additionally, RNA sequencing revealed several changes in gene expression, such as a decrease in the expression of extracellular matrix-related genes and an increase in that of inflammatory response-related genes, in the zinc-deficient group. Therefore, zinc deficiency delays olfactory epithelium regeneration after damage in mice.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
缺锌对小鼠嗅上皮再生的影响。
嗅觉上皮损伤后可再生;然而,再生过程受到多种因素的影响,如病毒感染、头部创伤和药物治疗。锌是人体必需的微量元素,在器官发育、生长和成熟过程中起着重要作用。锌还有助于调节大脑中的神经传递;然而,其与嗅上皮再生的关系尚不清楚。因此,我们采用严重缺锌小鼠模型来研究缺锌对嗅上皮再生的影响。雄性野生型C57BL/6小鼠在4周龄时分为缺锌组和对照组,8周龄时给予甲巯咪唑诱导重度嗅上皮损伤。我们通过石蜡切片的组织学分析,对甲巯咪唑给药前、给药后7天、14天和28天的嗅上皮进行了评估。在甲巯咪唑给药前8周进行RNA测序,以检测缺锌引起的基因表达变化。缺锌组再生嗅上皮厚度在各时间点均呈下降趋势,ki -67阳性、gap43阳性和嗅觉标记蛋白阳性细胞(分别为增殖细胞、未成熟嗅神经元和成熟嗅神经元)数量在部分时间点未增加。此外,RNA测序显示,在缺锌组中,基因表达发生了一些变化,如细胞外基质相关基因表达减少,炎症反应相关基因表达增加。因此,缺锌会延缓小鼠嗅觉上皮损伤后的再生。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Chemical Senses
Chemical Senses 医学-行为科学
CiteScore
8.60
自引率
2.90%
发文量
25
审稿时长
1 months
期刊介绍: Chemical Senses publishes original research and review papers on all aspects of chemoreception in both humans and animals. An important part of the journal''s coverage is devoted to techniques and the development and application of new methods for investigating chemoreception and chemosensory structures.
期刊最新文献
A receptor-based assay to study the sweet and bitter tastes of sweeteners and binary sweet blends: The SWEET Project. Late olfactory bulb involvement in COVID19. Monorhinal and Birhinal Odor Processing in Humans: an fMRI investigation. Methodologies for smellwalks and scentwalks-a critical review. Emotional self-body odors do not influence the access to visual awareness by emotional faces.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1