Fadhel Abbas, Phil Thomas, Bianca Cully-Duse, Nicholas M. Andronicos, Gal Winter
{"title":"Cattle–compost–soil: The transfer of antibiotic resistance in livestock agriculture","authors":"Fadhel Abbas, Phil Thomas, Bianca Cully-Duse, Nicholas M. Andronicos, Gal Winter","doi":"10.1002/mbo3.1375","DOIUrl":null,"url":null,"abstract":"<p>Antibiotic resistance is a major global health threat. Agricultural use of antibiotics is considered to be a main contributor to the issue, influencing both animals and humans as defined by the One Health approach. The purpose of the present study was to determine the abundance of antibiotic-resistant bacterial populations and the overall bacterial diversity of cattle farm soils that have been treated with animal manure compost. Soil and manure samples were collected from different sites at Tullimba farm, NSW. Cultures were grown from these samples in the presence of 11 commonly used antibiotics and antibiotic-resistant bacteria (ARB) colonies were identified. Soil and manure bacterial diversity was also determined using 16S ribosomal RNA next-generation sequencing. Results showed that ARB abundance was greatest in fresh manure and significantly lower in composted manure. However, the application of composted manure on paddock soil led to a significant increase in soil ARB abundance. Of the antibiotics tested, the number of ARB in each sample was greatest for antibiotics that inhibited the bacterial cell wall and protein synthesis. Collectively, these results suggest that the transfer of antibiotic resistance from composted animal manure to soil may not be solely mediated through the application of live bacteria and highlight the need for further research into the mechanism of antibiotic resistance transfer.</p>","PeriodicalId":18573,"journal":{"name":"MicrobiologyOpen","volume":null,"pages":null},"PeriodicalIF":3.9000,"publicationDate":"2023-08-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/mbo3.1375","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"MicrobiologyOpen","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/mbo3.1375","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Antibiotic resistance is a major global health threat. Agricultural use of antibiotics is considered to be a main contributor to the issue, influencing both animals and humans as defined by the One Health approach. The purpose of the present study was to determine the abundance of antibiotic-resistant bacterial populations and the overall bacterial diversity of cattle farm soils that have been treated with animal manure compost. Soil and manure samples were collected from different sites at Tullimba farm, NSW. Cultures were grown from these samples in the presence of 11 commonly used antibiotics and antibiotic-resistant bacteria (ARB) colonies were identified. Soil and manure bacterial diversity was also determined using 16S ribosomal RNA next-generation sequencing. Results showed that ARB abundance was greatest in fresh manure and significantly lower in composted manure. However, the application of composted manure on paddock soil led to a significant increase in soil ARB abundance. Of the antibiotics tested, the number of ARB in each sample was greatest for antibiotics that inhibited the bacterial cell wall and protein synthesis. Collectively, these results suggest that the transfer of antibiotic resistance from composted animal manure to soil may not be solely mediated through the application of live bacteria and highlight the need for further research into the mechanism of antibiotic resistance transfer.
期刊介绍:
MicrobiologyOpen is a peer reviewed, fully open access, broad-scope, and interdisciplinary journal delivering rapid decisions and fast publication of microbial science, a field which is undergoing a profound and exciting evolution in this post-genomic era.
The journal aims to serve the research community by providing a vehicle for authors wishing to publish quality research in both fundamental and applied microbiology. Our goal is to publish articles that stimulate discussion and debate, as well as add to our knowledge base and further the understanding of microbial interactions and microbial processes.
MicrobiologyOpen gives prompt and equal consideration to articles reporting theoretical, experimental, applied, and descriptive work in all aspects of bacteriology, virology, mycology and protistology, including, but not limited to:
- agriculture
- antimicrobial resistance
- astrobiology
- biochemistry
- biotechnology
- cell and molecular biology
- clinical microbiology
- computational, systems, and synthetic microbiology
- environmental science
- evolutionary biology, ecology, and systematics
- food science and technology
- genetics and genomics
- geobiology and earth science
- host-microbe interactions
- infectious diseases
- natural products discovery
- pharmaceutical and medicinal chemistry
- physiology
- plant pathology
- veterinary microbiology
We will consider submissions across unicellular and cell-cluster organisms: prokaryotes (bacteria, archaea) and eukaryotes (fungi, protists, microalgae, lichens), as well as viruses and prions infecting or interacting with microorganisms, plants and animals, including genetic, biochemical, biophysical, bioinformatic and structural analyses.
The journal features Original Articles (including full Research articles, Method articles, and Short Communications), Commentaries, Reviews, and Editorials. Original papers must report well-conducted research with conclusions supported by the data presented in the article. We also support confirmatory research and aim to work with authors to meet reviewer expectations.
MicrobiologyOpen publishes articles submitted directly to the journal and those referred from other Wiley journals.