Crosstalk between endoplasmic reticulum stress and non-coding RNAs in cardiovascular diseases.

IF 6.4 2区 生物学 Q1 CELL BIOLOGY Wiley Interdisciplinary Reviews: RNA Pub Date : 2023-07-01 DOI:10.1002/wrna.1767
Shuyun Lin, Haijiao Long, Lianjie Hou, Ming Zhang, Jiang Ting, Haiyue Lin, Pan Zheng, Weixing Lei, Kai Yin, Guojun Zhao
{"title":"Crosstalk between endoplasmic reticulum stress and non-coding RNAs in cardiovascular diseases.","authors":"Shuyun Lin,&nbsp;Haijiao Long,&nbsp;Lianjie Hou,&nbsp;Ming Zhang,&nbsp;Jiang Ting,&nbsp;Haiyue Lin,&nbsp;Pan Zheng,&nbsp;Weixing Lei,&nbsp;Kai Yin,&nbsp;Guojun Zhao","doi":"10.1002/wrna.1767","DOIUrl":null,"url":null,"abstract":"<p><p>Cells are exposed to various pathological stimulus within the cardiovascular system that challenge cells to adapt and survive. Several of these pathological stimulus alter the normal function of the endoplasmic reticulum (ER), leading to the accumulation of unfolded and misfolded proteins, thus triggering the unfolded protein response (UPR) to cope with the stress or trigger apoptosis of damaged cells. Downstream components of the UPR regulate transcription and translation reprogramming to ensure selective gene expression in response to pathological stimulus, including the expression of non-coding RNAs (ncRNAs). The ncRNAs play crucial roles in regulating transcription and translation, and their aberrant expression is associated with the development of cardiovascular disease (CVD). Notably, ncRNAs and ER stress can modulate each other and synergistically affect the development of CVD. Therefore, studying the interaction between ER stress and ncRNAs is necessary for effective prevention and treatment of CVD. In this review, we discuss the UPR signaling pathway and ncRNAs followed by the interplay regulation of ER stress and ncRNAs in CVD, which provides further insights into the understanding of the pathogenesis of CVD and therapeutic strategies. This article is categorized under: RNA in Disease and Development > RNA in Disease.</p>","PeriodicalId":23886,"journal":{"name":"Wiley Interdisciplinary Reviews: RNA","volume":"14 4","pages":"e1767"},"PeriodicalIF":6.4000,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Wiley Interdisciplinary Reviews: RNA","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1002/wrna.1767","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Cells are exposed to various pathological stimulus within the cardiovascular system that challenge cells to adapt and survive. Several of these pathological stimulus alter the normal function of the endoplasmic reticulum (ER), leading to the accumulation of unfolded and misfolded proteins, thus triggering the unfolded protein response (UPR) to cope with the stress or trigger apoptosis of damaged cells. Downstream components of the UPR regulate transcription and translation reprogramming to ensure selective gene expression in response to pathological stimulus, including the expression of non-coding RNAs (ncRNAs). The ncRNAs play crucial roles in regulating transcription and translation, and their aberrant expression is associated with the development of cardiovascular disease (CVD). Notably, ncRNAs and ER stress can modulate each other and synergistically affect the development of CVD. Therefore, studying the interaction between ER stress and ncRNAs is necessary for effective prevention and treatment of CVD. In this review, we discuss the UPR signaling pathway and ncRNAs followed by the interplay regulation of ER stress and ncRNAs in CVD, which provides further insights into the understanding of the pathogenesis of CVD and therapeutic strategies. This article is categorized under: RNA in Disease and Development > RNA in Disease.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
内质网应激与非编码rna在心血管疾病中的串扰。
细胞暴露于心血管系统内的各种病理刺激,挑战细胞适应和生存。这些病理刺激改变了内质网(ER)的正常功能,导致未折叠和错误折叠蛋白的积累,从而触发未折叠蛋白反应(UPR)来应对应激或触发受损细胞的凋亡。UPR的下游组分调节转录和翻译重编程,以确保在病理刺激下选择性表达基因,包括非编码rna (ncRNAs)的表达。ncrna在调节转录和翻译中起着至关重要的作用,它们的异常表达与心血管疾病(CVD)的发生有关。值得注意的是,ncrna和内质网应激可以相互调节,协同影响CVD的发展。因此,研究内质网应激与ncrna的相互作用对于有效预防和治疗CVD是必要的。在这篇综述中,我们讨论了UPR信号通路和ncRNAs,以及内质网应激和ncRNAs在CVD中的相互作用调控,从而进一步了解CVD的发病机制和治疗策略。本文分类为:RNA in Disease and Development > RNA in Disease。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
14.80
自引率
4.10%
发文量
67
审稿时长
6-12 weeks
期刊介绍: WIREs RNA aims to provide comprehensive, up-to-date, and coherent coverage of this interesting and growing field, providing a framework for both RNA experts and interdisciplinary researchers to not only gain perspective in areas of RNA biology, but to generate new insights and applications as well. Major topics to be covered are: RNA Structure and Dynamics; RNA Evolution and Genomics; RNA-Based Catalysis; RNA Interactions with Proteins and Other Molecules; Translation; RNA Processing; RNA Export/Localization; RNA Turnover and Surveillance; Regulatory RNAs/RNAi/Riboswitches; RNA in Disease and Development; and RNA Methods.
期刊最新文献
Three Stages of Nascent Protein Translocation Through the Ribosome Exit Tunnel. Decoding the role of RNA sequences and their interactions in influenza A virus infection and adaptation. Current Understandings and Open Hypotheses on Extracellular Circular RNAs. Contribution of DNA/RNA Structures Formed by Expanded CGG/CCG Repeats Within the FMR1 Locus in the Pathogenesis of Fragile X-Associated Disorders. Integrated Biochemical and Computational Methods for Deciphering RNA-Processing Codes.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1