JOINT AND INDIVIDUAL ANALYSIS OF BREAST CANCER HISTOLOGIC IMAGES AND GENOMIC COVARIATES.

IF 1.3 4区 数学 Q2 STATISTICS & PROBABILITY Annals of Applied Statistics Pub Date : 2021-12-01 Epub Date: 2021-12-21 DOI:10.1214/20-aoas1433
Iain Carmichael, Benjamin C Calhoun, Katherine A Hoadley, Melissa A Troester, Joseph Geradts, Heather D Couture, Linnea Olsson, Charles M Perou, Marc Niethammer, Jan Hannig, J S Marron
{"title":"JOINT AND INDIVIDUAL ANALYSIS OF BREAST CANCER HISTOLOGIC IMAGES AND GENOMIC COVARIATES.","authors":"Iain Carmichael, Benjamin C Calhoun, Katherine A Hoadley, Melissa A Troester, Joseph Geradts, Heather D Couture, Linnea Olsson, Charles M Perou, Marc Niethammer, Jan Hannig, J S Marron","doi":"10.1214/20-aoas1433","DOIUrl":null,"url":null,"abstract":"<p><p>The two main approaches in the study of breast cancer are histopathology (analyzing visual characteristics of tumors) and genomics. While both histopathology and genomics are fundamental to cancer research, the connections between these fields have been relatively superficial. We bridge this gap by investigating the Carolina Breast Cancer Study through the development of an integrative, exploratory analysis framework. Our analysis gives insights - some known, some novel - that are engaging to both pathologists and geneticists. Our analysis framework is based on Angle-based Joint and Individual Variation Explained (AJIVE) for statistical data integration and exploits Convolutional Neural Networks (CNNs) as a powerful, automatic method for image feature extraction. CNNs raise interpretability issues that we address by developing novel methods to explore visual modes of variation captured by statistical algorithms (e.g. PCA or AJIVE) applied to CNN features.</p>","PeriodicalId":50772,"journal":{"name":"Annals of Applied Statistics","volume":"15 4","pages":"1697-1722"},"PeriodicalIF":1.3000,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9007558/pdf/nihms-1780328.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Applied Statistics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1214/20-aoas1433","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2021/12/21 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0

Abstract

The two main approaches in the study of breast cancer are histopathology (analyzing visual characteristics of tumors) and genomics. While both histopathology and genomics are fundamental to cancer research, the connections between these fields have been relatively superficial. We bridge this gap by investigating the Carolina Breast Cancer Study through the development of an integrative, exploratory analysis framework. Our analysis gives insights - some known, some novel - that are engaging to both pathologists and geneticists. Our analysis framework is based on Angle-based Joint and Individual Variation Explained (AJIVE) for statistical data integration and exploits Convolutional Neural Networks (CNNs) as a powerful, automatic method for image feature extraction. CNNs raise interpretability issues that we address by developing novel methods to explore visual modes of variation captured by statistical algorithms (e.g. PCA or AJIVE) applied to CNN features.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
对乳腺癌组织学图像和基因组协变量进行联合和单独分析。
研究乳腺癌的两种主要方法是组织病理学(分析肿瘤的视觉特征)和基因组学。虽然组织病理学和基因组学都是癌症研究的基础,但这两个领域之间的联系却相对肤浅。我们通过开发一个综合探索性分析框架来研究卡罗莱纳乳腺癌研究,从而弥补了这一差距。我们的分析提供了对病理学家和遗传学家都有启发的见解--有些是已知的,有些是新颖的。我们的分析框架基于基于角度的联合和个体差异解释(AJIVE)进行统计数据整合,并利用卷积神经网络(CNN)作为图像特征提取的强大自动方法。卷积神经网络提出了可解释性问题,我们通过开发新颖的方法来解决这些问题,以探索应用于卷积神经网络特征的统计算法(如 PCA 或 AJIVE)所捕捉到的视觉变异模式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Annals of Applied Statistics
Annals of Applied Statistics 社会科学-统计学与概率论
CiteScore
3.10
自引率
5.60%
发文量
131
审稿时长
6-12 weeks
期刊介绍: Statistical research spans an enormous range from direct subject-matter collaborations to pure mathematical theory. The Annals of Applied Statistics, the newest journal from the IMS, is aimed at papers in the applied half of this range. Published quarterly in both print and electronic form, our goal is to provide a timely and unified forum for all areas of applied statistics.
期刊最新文献
PATIENT RECRUITMENT USING ELECTRONIC HEALTH RECORDS UNDER SELECTION BIAS: A TWO-PHASE SAMPLING FRAMEWORK. A NONPARAMETRIC MIXED-EFFECTS MIXTURE MODEL FOR PATTERNS OF CLINICAL MEASUREMENTS ASSOCIATED WITH COVID-19. A bootstrap model comparison test for identifying genes with context-specific patterns of genetic regulation. BIVARIATE FUNCTIONAL PATTERNS OF LIFETIME MEDICARE COSTS AMONG ESRD PATIENTS. EXPOSURE EFFECTS ON COUNT OUTCOMES WITH OBSERVATIONAL DATA, WITH APPLICATION TO INCARCERATED WOMEN.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1