{"title":"Assessing MTT and sulforhodamine B cell proliferation assays under multiple oxygen environments.","authors":"Ming Yao, Glenn Walker, Michael P Gamcsik","doi":"10.1007/s10616-023-00584-0","DOIUrl":null,"url":null,"abstract":"<p><p>Cell proliferation can be measured directly by counting cells or indirectly using assays that quantitate total protein or metabolic activity. However, for comparing cell proliferation under varying oxygen conditions it is not clear that these assays are appropriate surrogates for cell counting as cell metabolism and protein synthesis may vary under different oxygen environments. We used permeable bottom tissue culture ware to compare proliferation assays as a function of static oxygen concentrations under oxygen partial pressure (<i>p</i>O<sub>2</sub>) levels ranging from 2 to 139 mmHg. Cell proliferation was measured by cell counting and compared to surrogate methods measuring cell metabolism (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide, MTT) and total protein (sulforhodamine B) assays under these different environments in Caco-2, MCF-7, MCF-10A and PANC-1 human cell lines. We found that the MTT readings do not correlate with cell number for the Caco-2 and PANC-1 cell lines under different oxygen conditions, whereas the sulforhodamine B protein assays perform well under all conditions. However, within a given oxygen environment, both proliferation assays show a correlation with cell number. Therefore, the MTT assay must be used with caution when comparing cell growth or drug response for cells grown in different oxygen environments.</p><p><strong>Supplementary information: </strong>The online version contains supplementary material available at 10.1007/s10616-023-00584-0.</p>","PeriodicalId":10890,"journal":{"name":"Cytotechnology","volume":"75 5","pages":"381-390"},"PeriodicalIF":2.0000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10465423/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cytotechnology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s10616-023-00584-0","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/7/5 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Cell proliferation can be measured directly by counting cells or indirectly using assays that quantitate total protein or metabolic activity. However, for comparing cell proliferation under varying oxygen conditions it is not clear that these assays are appropriate surrogates for cell counting as cell metabolism and protein synthesis may vary under different oxygen environments. We used permeable bottom tissue culture ware to compare proliferation assays as a function of static oxygen concentrations under oxygen partial pressure (pO2) levels ranging from 2 to 139 mmHg. Cell proliferation was measured by cell counting and compared to surrogate methods measuring cell metabolism (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide, MTT) and total protein (sulforhodamine B) assays under these different environments in Caco-2, MCF-7, MCF-10A and PANC-1 human cell lines. We found that the MTT readings do not correlate with cell number for the Caco-2 and PANC-1 cell lines under different oxygen conditions, whereas the sulforhodamine B protein assays perform well under all conditions. However, within a given oxygen environment, both proliferation assays show a correlation with cell number. Therefore, the MTT assay must be used with caution when comparing cell growth or drug response for cells grown in different oxygen environments.
Supplementary information: The online version contains supplementary material available at 10.1007/s10616-023-00584-0.
期刊介绍:
The scope of the Journal includes:
1. The derivation, genetic modification and characterization of cell lines, genetic and phenotypic regulation, control of cellular metabolism, cell physiology and biochemistry related to cell function, performance and expression of cell products.
2. Cell culture techniques, substrates, environmental requirements and optimization, cloning, hybridization and molecular biology, including genomic and proteomic tools.
3. Cell culture systems, processes, reactors, scale-up, and industrial production. Descriptions of the design or construction of equipment, media or quality control procedures, that are ancillary to cellular research.
4. The application of animal/human cells in research in the field of stem cell research including maintenance of stemness, differentiation, genetics, and senescence, cancer research, research in immunology, as well as applications in tissue engineering and gene therapy.
5. The use of cell cultures as a substrate for bioassays, biomedical applications and in particular as a replacement for animal models.