Aaron Kusmec, Lakshmi Attigala, Xiongtao Dai, Srikant Srinivasan, Cheng-Ting Eddy Yeh, Patrick S Schnable
{"title":"A genetic tradeoff for tolerance to moderate and severe heat stress in US hybrid maize.","authors":"Aaron Kusmec, Lakshmi Attigala, Xiongtao Dai, Srikant Srinivasan, Cheng-Ting Eddy Yeh, Patrick S Schnable","doi":"10.1371/journal.pgen.1010799","DOIUrl":null,"url":null,"abstract":"<p><p>Global climate change is increasing both average temperatures and the frequencies of extreme high temperatures. Past studies have documented a strong negative effect of exposures to temperatures >30°C on hybrid maize yields. However, these studies could not disentangle genetic adaptation via artificial selection from changes in agronomic practices. Because most of the earliest maize hybrids are no longer available, side-by-side comparisons with modern hybrids under current field conditions are generally impossible. Here, we report on the collection and curation of 81 years of public yield trial records covering 4,730 maize hybrids, which enabled us to model genetic variation for temperature responses among maize hybrids. We show that selection may have indirectly and inconsistently contributed to the genetic adaptation of maize to moderate heat stress over this time period while preserving genetic variance for continued adaptation. However, our results reveal the existence of a genetic tradeoff for tolerance to moderate and severe heat stress, leading to a decrease in tolerance to severe heat stress over the same time period. Both trends are particularly conspicuous since the mid-1970s. Such a tradeoff poses challenges to the continued adaptation of maize to warming climates due to a projected increase in the frequency of extreme heat events. Nevertheless, given recent advances in phenomics, enviromics, and physiological modeling, our results offer a degree of optimism for the capacity of plant breeders to adapt maize to warming climates, assuming appropriate levels of R&D investment.</p>","PeriodicalId":20266,"journal":{"name":"PLoS Genetics","volume":"19 7","pages":"e1010799"},"PeriodicalIF":4.5000,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10325116/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"PLoS Genetics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1371/journal.pgen.1010799","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Agricultural and Biological Sciences","Score":null,"Total":0}
引用次数: 0
Abstract
Global climate change is increasing both average temperatures and the frequencies of extreme high temperatures. Past studies have documented a strong negative effect of exposures to temperatures >30°C on hybrid maize yields. However, these studies could not disentangle genetic adaptation via artificial selection from changes in agronomic practices. Because most of the earliest maize hybrids are no longer available, side-by-side comparisons with modern hybrids under current field conditions are generally impossible. Here, we report on the collection and curation of 81 years of public yield trial records covering 4,730 maize hybrids, which enabled us to model genetic variation for temperature responses among maize hybrids. We show that selection may have indirectly and inconsistently contributed to the genetic adaptation of maize to moderate heat stress over this time period while preserving genetic variance for continued adaptation. However, our results reveal the existence of a genetic tradeoff for tolerance to moderate and severe heat stress, leading to a decrease in tolerance to severe heat stress over the same time period. Both trends are particularly conspicuous since the mid-1970s. Such a tradeoff poses challenges to the continued adaptation of maize to warming climates due to a projected increase in the frequency of extreme heat events. Nevertheless, given recent advances in phenomics, enviromics, and physiological modeling, our results offer a degree of optimism for the capacity of plant breeders to adapt maize to warming climates, assuming appropriate levels of R&D investment.
期刊介绍:
PLOS Genetics is run by an international Editorial Board, headed by the Editors-in-Chief, Greg Barsh (HudsonAlpha Institute of Biotechnology, and Stanford University School of Medicine) and Greg Copenhaver (The University of North Carolina at Chapel Hill).
Articles published in PLOS Genetics are archived in PubMed Central and cited in PubMed.