Veronica Vella, Rosamaria Lappano, Eduardo Bonavita, Marcello Maggiolini, Robert Bryan Clarke, Antonino Belfiore, Ernestina Marianna De Francesco
{"title":"Insulin/IGF Axis and the Receptor for Advanced Glycation End Products: Role in Meta-inflammation and Potential in Cancer Therapy.","authors":"Veronica Vella, Rosamaria Lappano, Eduardo Bonavita, Marcello Maggiolini, Robert Bryan Clarke, Antonino Belfiore, Ernestina Marianna De Francesco","doi":"10.1210/endrev/bnad005","DOIUrl":null,"url":null,"abstract":"<p><p>In metabolic conditions such as obesity and diabetes, which are associated with deregulated signaling of the insulin/insulin-like growth factor system (IIGFs), inflammation plays a dominant role. In cancer, IIGFs is implicated in disease progression, particularly during obesity and diabetes; however, further mediators may act in concert with IIGFs to trigger meta-inflammation. The receptor for advanced glycation end-products (RAGE) and its ligands bridge together metabolism and inflammation in obesity, diabetes, and cancer. Herein, we summarize the main mechanisms of meta-inflammation in malignancies associated with obesity and diabetes; we provide our readers with the most recent understanding and conceptual advances on the role of RAGE at the crossroad between impaired metabolism and inflammation, toward disease aggressiveness. We inform on the potential hubs of cross-communications driven by aberrant RAGE axis and dysfunctional IIGFs in the tumor microenvironment. Furthermore, we offer a rationalized view on the opportunity to terminate meta-inflammation via targeting RAGE pathway, and on the possibility to shut its molecular connections with IIGFs, toward a better control of diabetes- and obesity-associated cancers.</p>","PeriodicalId":11544,"journal":{"name":"Endocrine reviews","volume":"44 4","pages":"693-723"},"PeriodicalIF":22.0000,"publicationDate":"2023-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10335176/pdf/","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Endocrine reviews","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1210/endrev/bnad005","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENDOCRINOLOGY & METABOLISM","Score":null,"Total":0}
引用次数: 8
Abstract
In metabolic conditions such as obesity and diabetes, which are associated with deregulated signaling of the insulin/insulin-like growth factor system (IIGFs), inflammation plays a dominant role. In cancer, IIGFs is implicated in disease progression, particularly during obesity and diabetes; however, further mediators may act in concert with IIGFs to trigger meta-inflammation. The receptor for advanced glycation end-products (RAGE) and its ligands bridge together metabolism and inflammation in obesity, diabetes, and cancer. Herein, we summarize the main mechanisms of meta-inflammation in malignancies associated with obesity and diabetes; we provide our readers with the most recent understanding and conceptual advances on the role of RAGE at the crossroad between impaired metabolism and inflammation, toward disease aggressiveness. We inform on the potential hubs of cross-communications driven by aberrant RAGE axis and dysfunctional IIGFs in the tumor microenvironment. Furthermore, we offer a rationalized view on the opportunity to terminate meta-inflammation via targeting RAGE pathway, and on the possibility to shut its molecular connections with IIGFs, toward a better control of diabetes- and obesity-associated cancers.
期刊介绍:
Endocrine Reviews, published bimonthly, features concise timely reviews updating key mechanistic and clinical concepts, alongside comprehensive, authoritative articles covering both experimental and clinical endocrinology themes. The journal considers topics informing clinical practice based on emerging and established evidence from clinical research. It also reviews advances in endocrine science stemming from studies in cell biology, immunology, pharmacology, genetics, molecular biology, neuroscience, reproductive medicine, and pediatric endocrinology.