Mohamed ElRefai MBBCh, MRCP, PhD, Mohamed Abouelasaad MBBCh, MSc, MRCP, Benedict M. Wiles PhD, MA, MBBS, MRCP, Anthony J. Dunn BSc, Stefano Coniglio PhD, Alain B. Zemkoho PhD, John Morgan MA, MB, MBBChir, MD(Cantab), FRCP, FESC, FBHRS, Paul R. Roberts MD, FRCP
{"title":"Correlation analysis of deep learning methods in S-ICD screening","authors":"Mohamed ElRefai MBBCh, MRCP, PhD, Mohamed Abouelasaad MBBCh, MSc, MRCP, Benedict M. Wiles PhD, MA, MBBS, MRCP, Anthony J. Dunn BSc, Stefano Coniglio PhD, Alain B. Zemkoho PhD, John Morgan MA, MB, MBBChir, MD(Cantab), FRCP, FESC, FBHRS, Paul R. Roberts MD, FRCP","doi":"10.1111/anec.13056","DOIUrl":null,"url":null,"abstract":"<div>\n \n \n <section>\n \n <h3> Background</h3>\n \n <p>Machine learning methods are used in the classification of various cardiovascular diseases through ECG data analysis. The concept of varying subcutaneous implantable cardiac defibrillator (S-ICD) eligibility, owing to the dynamicity of ECG signals, has been introduced before. There are practical limitations to acquiring longer durations of ECG signals for S-ICD screening. This study explored the potential use of deep learning methods in S-ICD screening.</p>\n </section>\n \n <section>\n \n <h3> Methods</h3>\n \n <p>This was a retrospective study. A deep learning tool was used to provide descriptive analysis of the T:R ratios over 24 h recordings of S-ICD vectors. Spearman's rank correlation test was used to compare the results statistically to those of a “gold standard” S-ICD simulator.</p>\n </section>\n \n <section>\n \n <h3> Results</h3>\n \n <p>A total of 14 patients (mean age: 63.7 ± 5.2 years, 71.4% male) were recruited and 28 vectors were analyzed. Mean T:R, standard deviation of T:R, and favorable ratio time (FVR)—a new concept introduced in this study—for all vectors combined were 0.21 ± 0.11, 0.08 ± 0.04, and 79 ± 30%, respectively. There were statistically significant strong correlations between the outcomes of our novel tool and the S-ICD simulator (<i>p</i> < .001).</p>\n </section>\n \n <section>\n \n <h3> Conclusion</h3>\n \n <p>Deep learning methods could provide a practical software solution to analyze data acquired for longer durations than current S-ICD screening practices. This could help select patients better suited for S-ICD therapy as well as guide vector selection in S-ICD eligible patients. Further work is needed before this could be translated into clinical practice.</p>\n </section>\n </div>","PeriodicalId":8074,"journal":{"name":"Annals of Noninvasive Electrocardiology","volume":"28 4","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2023-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/anec.13056","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Noninvasive Electrocardiology","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/anec.13056","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CARDIAC & CARDIOVASCULAR SYSTEMS","Score":null,"Total":0}
引用次数: 1
Abstract
Background
Machine learning methods are used in the classification of various cardiovascular diseases through ECG data analysis. The concept of varying subcutaneous implantable cardiac defibrillator (S-ICD) eligibility, owing to the dynamicity of ECG signals, has been introduced before. There are practical limitations to acquiring longer durations of ECG signals for S-ICD screening. This study explored the potential use of deep learning methods in S-ICD screening.
Methods
This was a retrospective study. A deep learning tool was used to provide descriptive analysis of the T:R ratios over 24 h recordings of S-ICD vectors. Spearman's rank correlation test was used to compare the results statistically to those of a “gold standard” S-ICD simulator.
Results
A total of 14 patients (mean age: 63.7 ± 5.2 years, 71.4% male) were recruited and 28 vectors were analyzed. Mean T:R, standard deviation of T:R, and favorable ratio time (FVR)—a new concept introduced in this study—for all vectors combined were 0.21 ± 0.11, 0.08 ± 0.04, and 79 ± 30%, respectively. There were statistically significant strong correlations between the outcomes of our novel tool and the S-ICD simulator (p < .001).
Conclusion
Deep learning methods could provide a practical software solution to analyze data acquired for longer durations than current S-ICD screening practices. This could help select patients better suited for S-ICD therapy as well as guide vector selection in S-ICD eligible patients. Further work is needed before this could be translated into clinical practice.
期刊介绍:
The ANNALS OF NONINVASIVE ELECTROCARDIOLOGY (A.N.E) is an online only journal that incorporates ongoing advances in the clinical application and technology of traditional and new ECG-based techniques in the diagnosis and treatment of cardiac patients.
ANE is the first journal in an evolving subspecialty that incorporates ongoing advances in the clinical application and technology of traditional and new ECG-based techniques in the diagnosis and treatment of cardiac patients. The publication includes topics related to 12-lead, exercise and high-resolution electrocardiography, arrhythmias, ischemia, repolarization phenomena, heart rate variability, circadian rhythms, bioengineering technology, signal-averaged ECGs, T-wave alternans and automatic external defibrillation.
ANE publishes peer-reviewed articles of interest to clinicians and researchers in the field of noninvasive electrocardiology. Original research, clinical studies, state-of-the-art reviews, case reports, technical notes, and letters to the editors will be published to meet future demands in this field.