Magnetic nanomaterials-mediated neuromodulation.

IF 6.9 2区 医学 Q1 MEDICINE, RESEARCH & EXPERIMENTAL Wiley interdisciplinary reviews. Nanomedicine and nanobiotechnology Pub Date : 2023-07-01 DOI:10.1002/wnan.1890
Xiaofeng Lu, Galong Li, Wangbo Jiao, Kuo Li, Tingbin Zhang, Xiaoli Liu, Haiming Fan
{"title":"Magnetic nanomaterials-mediated neuromodulation.","authors":"Xiaofeng Lu,&nbsp;Galong Li,&nbsp;Wangbo Jiao,&nbsp;Kuo Li,&nbsp;Tingbin Zhang,&nbsp;Xiaoli Liu,&nbsp;Haiming Fan","doi":"10.1002/wnan.1890","DOIUrl":null,"url":null,"abstract":"<p><p>Researchers have leveraged magnetic nanomaterials (MNMs) to explore neural circuits and treat neurological diseases via an approach known as MNMs-mediated neuromodulation. Here, the magneto-responsive effects of MNMs to an external magnetic field are manipulated to activate or inhibit neuronal cell activity. In this way, MNMs can serve as a nano-mediator, by converting electromagnetic energy into heat, mechanical force/torque, and an electrical field at nanoscale. These physicochemical effects can stimulate ion channels and activate precise signaling pathways involved in neuromodulation. In this review, we outline the various ion channels and MNMs that have been applied to MNMs-mediated neuromodulation. We highlight the recent advances made in this technique and its potential applications, and then discuss the current challenges and future directions of MNMs-mediated neuromodulation. Our aim is to reveal the potential of MNMs to treat neurological diseases in the clinical setting. This article is categorized under: Therapeutic Approaches and Drug Discovery > Emerging Technologies Nanotechnology Approaches to Biology > Nanoscale Systems in Biology Therapeutic Approaches and Drug Discovery > Nanomedicine for Neurological Disease.</p>","PeriodicalId":23697,"journal":{"name":"Wiley interdisciplinary reviews. Nanomedicine and nanobiotechnology","volume":"15 4","pages":"e1890"},"PeriodicalIF":6.9000,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Wiley interdisciplinary reviews. Nanomedicine and nanobiotechnology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1002/wnan.1890","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0

Abstract

Researchers have leveraged magnetic nanomaterials (MNMs) to explore neural circuits and treat neurological diseases via an approach known as MNMs-mediated neuromodulation. Here, the magneto-responsive effects of MNMs to an external magnetic field are manipulated to activate or inhibit neuronal cell activity. In this way, MNMs can serve as a nano-mediator, by converting electromagnetic energy into heat, mechanical force/torque, and an electrical field at nanoscale. These physicochemical effects can stimulate ion channels and activate precise signaling pathways involved in neuromodulation. In this review, we outline the various ion channels and MNMs that have been applied to MNMs-mediated neuromodulation. We highlight the recent advances made in this technique and its potential applications, and then discuss the current challenges and future directions of MNMs-mediated neuromodulation. Our aim is to reveal the potential of MNMs to treat neurological diseases in the clinical setting. This article is categorized under: Therapeutic Approaches and Drug Discovery > Emerging Technologies Nanotechnology Approaches to Biology > Nanoscale Systems in Biology Therapeutic Approaches and Drug Discovery > Nanomedicine for Neurological Disease.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
磁性纳米材料介导的神经调节。
研究人员利用磁性纳米材料(MNMs)探索神经回路,并通过一种被称为MNMs介导的神经调节的方法治疗神经系统疾病。在这里,纳米颗粒对外部磁场的磁响应效应被操纵来激活或抑制神经元细胞的活动。通过这种方式,纳米纳米材料可以作为纳米介质,将电磁能转化为纳米尺度的热能、机械力/扭矩和电场。这些物理化学效应可以刺激离子通道并激活参与神经调节的精确信号通路。在这篇综述中,我们概述了各种离子通道和已应用于MNMs介导的神经调节的MNMs。我们重点介绍了该技术的最新进展及其潜在应用,然后讨论了mnms介导的神经调节的当前挑战和未来方向。我们的目的是揭示纳米颗粒在临床治疗神经系统疾病方面的潜力。本文分类如下:治疗方法和药物发现>新兴技术纳米技术生物学方法>生物学中的纳米系统治疗方法和药物发现>神经系统疾病的纳米医学。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Wiley interdisciplinary reviews. Nanomedicine and nanobiotechnology
Wiley interdisciplinary reviews. Nanomedicine and nanobiotechnology NANOSCIENCE & NANOTECHNOLOGY-MEDICINE, RESEARCH & EXPERIMENTAL
CiteScore
16.60
自引率
2.30%
发文量
93
期刊介绍: Nanotechnology stands as one of the pivotal scientific domains of the twenty-first century, recognized universally for its transformative potential. Within the biomedical realm, nanotechnology finds crucial applications in nanobiotechnology and nanomedicine, highlighted as one of seven emerging research areas under the NIH Roadmap for Medical Research. The advancement of this field hinges upon collaborative efforts across diverse disciplines, including clinicians, biomedical engineers, materials scientists, applied physicists, and toxicologists. Recognizing the imperative for a high-caliber interdisciplinary review platform, WIREs Nanomedicine and Nanobiotechnology emerges to fulfill this critical need. Our topical coverage spans a wide spectrum, encompassing areas such as toxicology and regulatory issues, implantable materials and surgical technologies, diagnostic tools, nanotechnology approaches to biology, therapeutic approaches and drug discovery, and biology-inspired nanomaterials. Join us in exploring the frontiers of nanotechnology and its profound impact on biomedical research and healthcare.
期刊最新文献
Design and synthesis of bioinspired nanomaterials for biomedical application. Passive sweat wearable: A new paradigm in the wearable landscape toward enabling "detect to treat" opportunities. Ultrasound-mediated nano-sized drug delivery systems for cancer treatment: Multi-scale and multi-physics computational modeling. Raman spectroscopy and its plasmon-enhanced counterparts: A toolbox to probe protein dynamics and aggregation. Transferosomes as a transdermal drug delivery system: Dermal kinetics and recent developments.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1