Xiaofeng Lu, Galong Li, Wangbo Jiao, Kuo Li, Tingbin Zhang, Xiaoli Liu, Haiming Fan
{"title":"Magnetic nanomaterials-mediated neuromodulation.","authors":"Xiaofeng Lu, Galong Li, Wangbo Jiao, Kuo Li, Tingbin Zhang, Xiaoli Liu, Haiming Fan","doi":"10.1002/wnan.1890","DOIUrl":null,"url":null,"abstract":"<p><p>Researchers have leveraged magnetic nanomaterials (MNMs) to explore neural circuits and treat neurological diseases via an approach known as MNMs-mediated neuromodulation. Here, the magneto-responsive effects of MNMs to an external magnetic field are manipulated to activate or inhibit neuronal cell activity. In this way, MNMs can serve as a nano-mediator, by converting electromagnetic energy into heat, mechanical force/torque, and an electrical field at nanoscale. These physicochemical effects can stimulate ion channels and activate precise signaling pathways involved in neuromodulation. In this review, we outline the various ion channels and MNMs that have been applied to MNMs-mediated neuromodulation. We highlight the recent advances made in this technique and its potential applications, and then discuss the current challenges and future directions of MNMs-mediated neuromodulation. Our aim is to reveal the potential of MNMs to treat neurological diseases in the clinical setting. This article is categorized under: Therapeutic Approaches and Drug Discovery > Emerging Technologies Nanotechnology Approaches to Biology > Nanoscale Systems in Biology Therapeutic Approaches and Drug Discovery > Nanomedicine for Neurological Disease.</p>","PeriodicalId":23697,"journal":{"name":"Wiley interdisciplinary reviews. Nanomedicine and nanobiotechnology","volume":"15 4","pages":"e1890"},"PeriodicalIF":6.9000,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Wiley interdisciplinary reviews. Nanomedicine and nanobiotechnology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1002/wnan.1890","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0
Abstract
Researchers have leveraged magnetic nanomaterials (MNMs) to explore neural circuits and treat neurological diseases via an approach known as MNMs-mediated neuromodulation. Here, the magneto-responsive effects of MNMs to an external magnetic field are manipulated to activate or inhibit neuronal cell activity. In this way, MNMs can serve as a nano-mediator, by converting electromagnetic energy into heat, mechanical force/torque, and an electrical field at nanoscale. These physicochemical effects can stimulate ion channels and activate precise signaling pathways involved in neuromodulation. In this review, we outline the various ion channels and MNMs that have been applied to MNMs-mediated neuromodulation. We highlight the recent advances made in this technique and its potential applications, and then discuss the current challenges and future directions of MNMs-mediated neuromodulation. Our aim is to reveal the potential of MNMs to treat neurological diseases in the clinical setting. This article is categorized under: Therapeutic Approaches and Drug Discovery > Emerging Technologies Nanotechnology Approaches to Biology > Nanoscale Systems in Biology Therapeutic Approaches and Drug Discovery > Nanomedicine for Neurological Disease.
期刊介绍:
Nanotechnology stands as one of the pivotal scientific domains of the twenty-first century, recognized universally for its transformative potential. Within the biomedical realm, nanotechnology finds crucial applications in nanobiotechnology and nanomedicine, highlighted as one of seven emerging research areas under the NIH Roadmap for Medical Research. The advancement of this field hinges upon collaborative efforts across diverse disciplines, including clinicians, biomedical engineers, materials scientists, applied physicists, and toxicologists.
Recognizing the imperative for a high-caliber interdisciplinary review platform, WIREs Nanomedicine and Nanobiotechnology emerges to fulfill this critical need. Our topical coverage spans a wide spectrum, encompassing areas such as toxicology and regulatory issues, implantable materials and surgical technologies, diagnostic tools, nanotechnology approaches to biology, therapeutic approaches and drug discovery, and biology-inspired nanomaterials. Join us in exploring the frontiers of nanotechnology and its profound impact on biomedical research and healthcare.