{"title":"Super-resolution imaging reveals the relationship between CaMKIIβ and drebrin within dendritic spines","authors":"Hiroyuki Yamazaki , Noriko Koganezawa , Hideaki Yokoo , Yuko Sekino , Tomoaki Shirao","doi":"10.1016/j.neures.2023.08.002","DOIUrl":null,"url":null,"abstract":"<div><p>Dendritic spines are unique postsynaptic structures that emerge from the dendrites of neurons. They undergo activity-dependent morphological changes known as structural plasticity. The changes involve actin cytoskeletal remodeling, which is regulated by actin-binding proteins. CaMKII is a crucial molecule in synaptic plasticity. Notably, CaMKIIβ subtype is known to bind to filamentous-actin and is closely involved in structural plasticity. We have shown that CaMKIIβ binds to drebrin, and is localized in spines as both drebrin-dependent and drebrin-independent pools. However, the nanoscale relationship between drebrin and CaMKIIβ within dendritic spines has not been clarified. In this study, we used stochastic optical reconstruction microscopy (STORM) to examine the detailed localization of these proteins. STORM imaging showed that CaMKIIβ co-localized with drebrin in the core region of spines, and localized in the submembrane region of spines without drebrin. Interestingly, the dissociation of CaMKIIβ and drebrin in the core region was induced by NMDA receptor activation. In drebrin knockdown neurons, CaMKIIβ was decreased in the core region but not in the submembrane region. Together it indicates that the clustering of CaMKIIβ in the spine core region is dependent on drebrin. These findings suggest that drebrin-dependent CaMKIIβ is in a standby state before its activation.</p></div>","PeriodicalId":19146,"journal":{"name":"Neuroscience Research","volume":"199 ","pages":"Pages 30-35"},"PeriodicalIF":2.4000,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0168010223001657/pdfft?md5=2a20c32e129d8dbc687c0c957f8f56c2&pid=1-s2.0-S0168010223001657-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neuroscience Research","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0168010223001657","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Dendritic spines are unique postsynaptic structures that emerge from the dendrites of neurons. They undergo activity-dependent morphological changes known as structural plasticity. The changes involve actin cytoskeletal remodeling, which is regulated by actin-binding proteins. CaMKII is a crucial molecule in synaptic plasticity. Notably, CaMKIIβ subtype is known to bind to filamentous-actin and is closely involved in structural plasticity. We have shown that CaMKIIβ binds to drebrin, and is localized in spines as both drebrin-dependent and drebrin-independent pools. However, the nanoscale relationship between drebrin and CaMKIIβ within dendritic spines has not been clarified. In this study, we used stochastic optical reconstruction microscopy (STORM) to examine the detailed localization of these proteins. STORM imaging showed that CaMKIIβ co-localized with drebrin in the core region of spines, and localized in the submembrane region of spines without drebrin. Interestingly, the dissociation of CaMKIIβ and drebrin in the core region was induced by NMDA receptor activation. In drebrin knockdown neurons, CaMKIIβ was decreased in the core region but not in the submembrane region. Together it indicates that the clustering of CaMKIIβ in the spine core region is dependent on drebrin. These findings suggest that drebrin-dependent CaMKIIβ is in a standby state before its activation.
期刊介绍:
The international journal publishing original full-length research articles, short communications, technical notes, and reviews on all aspects of neuroscience
Neuroscience Research is an international journal for high quality articles in all branches of neuroscience, from the molecular to the behavioral levels. The journal is published in collaboration with the Japan Neuroscience Society and is open to all contributors in the world.