A Prostate-Specific Membrane Antigen PET-Based Approach for Improved Diagnosis of Prostate Cancer in Gleason Grade Group 1: A Multicenter Retrospective Study.
{"title":"A Prostate-Specific Membrane Antigen PET-Based Approach for Improved Diagnosis of Prostate Cancer in Gleason Grade Group 1: A Multicenter Retrospective Study.","authors":"Jingliang Zhang, Fei Kang, Jie Gao, Jianhua Jiao, Zhiyong Quan, Shuaijun Ma, Yu Li, Shikuan Guo, Zeyu Li, Yuming Jing, Keying Zhang, Fa Yang, Donghui Han, Weihong Wen, Jing Zhang, Jing Ren, Jing Wang, Hongqian Guo, Weijun Qin","doi":"10.2967/jnumed.122.265001","DOIUrl":null,"url":null,"abstract":"<p><p>The preoperative Gleason grade group (GG) from transrectal ultrasound-guided prostate biopsy is crucial for treatment decisions but may underestimate the postoperative GG and miss clinically significant prostate cancer (csPCa), particularly in patients with biopsy GG1. In such patients, an SUV<sub>max</sub> of at least 12 has 100% specificity for detecting csPCa. In patients with an SUV<sub>max</sub> of less than 12, we aimed to develop a model to improve the diagnostic accuracy of csPCa. <b>Methods:</b> The study retrospectively included 56 prostate cancer patients with transrectal ultrasound-guided biopsy GG1 and an SUV<sub>max</sub> of less than 12 from 2 tertiary hospitals. All [<sup>68</sup>Ga]Ga-PSMA-HBED-CC PET scans were centrally reviewed in Xijing Hospital. A deep learning model was used to evaluate the overlap of SUV<sub>max</sub> (size scale, 3 cm) and the level of Gleason pattern (size scale, 500 μm). A diagnostic model was developed using the PRIMARY score and SUV<sub>max</sub>, and its discriminative performance and clinical utility were compared with other methods. The 5-fold cross-validation (repeated 1,000 times) was used for internal validation. <b>Results:</b> In patients with GG1 and an SUV<sub>max</sub> of less than 12, significant prostate-specific membrane antigen (PSMA) histochemical score (H-score) H-score overlap occurred among benign gland, Gleason pattern 3, and Gleason pattern 4 lesions, causing SUV<sub>max</sub> overlap between csPCa and non-csPCa. The model of 10 × PRIMARY score + 2 × SUV<sub>max</sub> exhibited a higher area under the curve (AUC, 0.8359; 95% CI, 0.7233-0.9484) than that found using only the SUV<sub>max</sub> (AUC, 0.7353; <i>P</i> = 0.048) or PRIMARY score (AUC, 0.7257; <i>P</i> = 0.009) for the cohort and a higher AUC (0.8364; 95% CI, 0.7114-0.9614) than that found using only the Prostate Imaging Reporting and Data System (PI-RADS) score of 5-4 versus 3-1 (AUC, 0.7036; <i>P</i> = 0.149) and the PI-RADS score of 5-3 versus 2-1 (AUC, 0.6373; <i>P</i> = 0.014) for a subgroup. The model reduced the misdiagnosis of the PI-RADS score of 5-4 versus 3-1 by 78.57% (11/14) and the PI-RADS score of 5-3 versus 2-1 by 77.78% (14/18). The internal validation showed that the mean 5-fold cross-validated AUC was 0.8357 (95% CI, 0.8357-0.8358). <b>Conclusion:</b> We preliminarily suggest that the model of 10 × PRIMARY score + 2 × SUV<sub>max</sub> may enhance the diagnostic accuracy of csPCa in patients with biopsy GG1 and an SUV<sub>max</sub> of less than 12 by maximizing PSMA information use, reducing the misdiagnosis of the PI-RADS score, and thereby aiding in making appropriate treatment decisions.</p>","PeriodicalId":16758,"journal":{"name":"Journal of Nuclear Medicine","volume":" ","pages":"1750-1757"},"PeriodicalIF":9.1000,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Nuclear Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2967/jnumed.122.265001","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/8/31 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0
Abstract
The preoperative Gleason grade group (GG) from transrectal ultrasound-guided prostate biopsy is crucial for treatment decisions but may underestimate the postoperative GG and miss clinically significant prostate cancer (csPCa), particularly in patients with biopsy GG1. In such patients, an SUVmax of at least 12 has 100% specificity for detecting csPCa. In patients with an SUVmax of less than 12, we aimed to develop a model to improve the diagnostic accuracy of csPCa. Methods: The study retrospectively included 56 prostate cancer patients with transrectal ultrasound-guided biopsy GG1 and an SUVmax of less than 12 from 2 tertiary hospitals. All [68Ga]Ga-PSMA-HBED-CC PET scans were centrally reviewed in Xijing Hospital. A deep learning model was used to evaluate the overlap of SUVmax (size scale, 3 cm) and the level of Gleason pattern (size scale, 500 μm). A diagnostic model was developed using the PRIMARY score and SUVmax, and its discriminative performance and clinical utility were compared with other methods. The 5-fold cross-validation (repeated 1,000 times) was used for internal validation. Results: In patients with GG1 and an SUVmax of less than 12, significant prostate-specific membrane antigen (PSMA) histochemical score (H-score) H-score overlap occurred among benign gland, Gleason pattern 3, and Gleason pattern 4 lesions, causing SUVmax overlap between csPCa and non-csPCa. The model of 10 × PRIMARY score + 2 × SUVmax exhibited a higher area under the curve (AUC, 0.8359; 95% CI, 0.7233-0.9484) than that found using only the SUVmax (AUC, 0.7353; P = 0.048) or PRIMARY score (AUC, 0.7257; P = 0.009) for the cohort and a higher AUC (0.8364; 95% CI, 0.7114-0.9614) than that found using only the Prostate Imaging Reporting and Data System (PI-RADS) score of 5-4 versus 3-1 (AUC, 0.7036; P = 0.149) and the PI-RADS score of 5-3 versus 2-1 (AUC, 0.6373; P = 0.014) for a subgroup. The model reduced the misdiagnosis of the PI-RADS score of 5-4 versus 3-1 by 78.57% (11/14) and the PI-RADS score of 5-3 versus 2-1 by 77.78% (14/18). The internal validation showed that the mean 5-fold cross-validated AUC was 0.8357 (95% CI, 0.8357-0.8358). Conclusion: We preliminarily suggest that the model of 10 × PRIMARY score + 2 × SUVmax may enhance the diagnostic accuracy of csPCa in patients with biopsy GG1 and an SUVmax of less than 12 by maximizing PSMA information use, reducing the misdiagnosis of the PI-RADS score, and thereby aiding in making appropriate treatment decisions.
期刊介绍:
The Journal of Nuclear Medicine (JNM), self-published by the Society of Nuclear Medicine and Molecular Imaging (SNMMI), provides readers worldwide with clinical and basic science investigations, continuing education articles, reviews, employment opportunities, and updates on practice and research. In the 2022 Journal Citation Reports (released in June 2023), JNM ranked sixth in impact among 203 medical journals worldwide in the radiology, nuclear medicine, and medical imaging category.