{"title":"Comparison of retinal parameters between rhesus and cynomolgus macaques.","authors":"Chengjie He, Jingyi Peng, Jiayi Jin, Wanwen Shao, Yongxin Zheng, Liuxueying Zhong","doi":"10.1538/expanim.22-0022","DOIUrl":null,"url":null,"abstract":"<p><p>Nonhuman primates are important research models for basic vision research, preclinical pathogenesis, and treatment studies due to strong similarities in retinal structure and function with humans. We compared retinal parameters between 10 healthy normal rhesus macaques (Macaca mulatta) and 10 cynomolgus macaques (Macaca fascicularis) by optical coherence tomography and electroretinography. The Heidelberg Spectralis® HRA+OCT and Roland multifocal electrophysiometer were used to analyze retinal morphology, multifocal electroretinograms (mfERGs), and full-field electroretinograms (ff-ERGs). Mean retinal thickness was lowest in the central fovea of macaques and did not differ significantly between species, but the retinal thicknesses of the nerve fiber ganglion cell layer and the inner plexiform layer were significantly different. The amplitude density of the N1 wave was lower in rhesus macaques than in cynomolgus macaques in ring and quadrant areas. Dark-adapted 3.0 oscillatory potentials (reflection of amacrine cell activity) and light-adapted 30-hz flicker ERG (a sensitive cone-pathway-driven response) waveforms of the ff-ERG were similar in both species, while the times to peaks in dark-adapted 0.01 ERG (the rod-driven response of bipolar cells) and dark-adapted 3.0 ERG (combined rod and cone system responses) as well as the implicit times of the a- and b-waves in light-adapted 3.0 ERG (the single-flash cone response) were substantially different. This study provides normative retinal parameters for nonhuman primate research on basic and clinical ophthalmology, as well as a reference for researchers in the appropriate selection of rhesus or cynomolgus macaques as models for ophthalmology studies.</p>","PeriodicalId":12102,"journal":{"name":"Experimental Animals","volume":" ","pages":"20-28"},"PeriodicalIF":2.2000,"publicationDate":"2024-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10877147/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Experimental Animals","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1538/expanim.22-0022","RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/7/18 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"VETERINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Nonhuman primates are important research models for basic vision research, preclinical pathogenesis, and treatment studies due to strong similarities in retinal structure and function with humans. We compared retinal parameters between 10 healthy normal rhesus macaques (Macaca mulatta) and 10 cynomolgus macaques (Macaca fascicularis) by optical coherence tomography and electroretinography. The Heidelberg Spectralis® HRA+OCT and Roland multifocal electrophysiometer were used to analyze retinal morphology, multifocal electroretinograms (mfERGs), and full-field electroretinograms (ff-ERGs). Mean retinal thickness was lowest in the central fovea of macaques and did not differ significantly between species, but the retinal thicknesses of the nerve fiber ganglion cell layer and the inner plexiform layer were significantly different. The amplitude density of the N1 wave was lower in rhesus macaques than in cynomolgus macaques in ring and quadrant areas. Dark-adapted 3.0 oscillatory potentials (reflection of amacrine cell activity) and light-adapted 30-hz flicker ERG (a sensitive cone-pathway-driven response) waveforms of the ff-ERG were similar in both species, while the times to peaks in dark-adapted 0.01 ERG (the rod-driven response of bipolar cells) and dark-adapted 3.0 ERG (combined rod and cone system responses) as well as the implicit times of the a- and b-waves in light-adapted 3.0 ERG (the single-flash cone response) were substantially different. This study provides normative retinal parameters for nonhuman primate research on basic and clinical ophthalmology, as well as a reference for researchers in the appropriate selection of rhesus or cynomolgus macaques as models for ophthalmology studies.
期刊介绍:
The aim of this international journal is to accelerate progress in laboratory animal experimentation and disseminate relevant information in related areas through publication of peer reviewed Original papers and Review articles. The journal covers basic to applied biomedical research centering around use of experimental animals and also covers topics related to experimental animals such as technology, management, and animal welfare.