{"title":"Multimodal integration and modulation of visual and somatosensory inputs on the corticospinal excitability","authors":"Fatma Gokcem Yildiz , Cagri Mesut Temucin","doi":"10.1016/j.neucli.2022.102842","DOIUrl":null,"url":null,"abstract":"<div><h3>Objective</h3><p>Corticospinal excitability may be affected by various sensory inputs under physiological conditions. In this study, we aimed to investigate the corticospinal excitability by using multimodal conditioning paradigms of combined somatosensory electrical and visual stimulation to understand the sensory-motor integration.</p></div><div><h3>Methods</h3><p>We examined motor evoked potentials (MEP) obtained by using transcranial magnetic stimulation (TMS) that were conditioned by using a single goggle–light-emitting diode (LED) stimulation, peripheral nerve electrical stimulation (short latency afferent inhibition protocol), or a combination of both (goggle-LED+electrical stimulation) at different interstimulus intervals (ISIs) in 14 healthy volunteers.</p></div><div><h3>Results</h3><p>We found MEP inhibition at ISIs of 50–60 ms using the conditioned goggle-LED stimulation. The combined goggle-LED stimulation at a 60 ms ISI resulted in an additional inhibition to the electrical stimulation.</p></div><div><h3>Conclusions</h3><p>Visual inputs cause significant modulatory effects on the corticospinal excitability. Combined visual and somatosensory stimuli integrate probably via different neural circuits and/or interneuron populations. To our knowledge, multimodal integration of visual and somatosensory inputs by using TMS-short latency inhibition protocol have been evaluated via electrophysiological methods for the first time in this study.</p></div>","PeriodicalId":19134,"journal":{"name":"Neurophysiologie Clinique/Clinical Neurophysiology","volume":"53 3","pages":"Article 102842"},"PeriodicalIF":2.7000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neurophysiologie Clinique/Clinical Neurophysiology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0987705322001265","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CLINICAL NEUROLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Objective
Corticospinal excitability may be affected by various sensory inputs under physiological conditions. In this study, we aimed to investigate the corticospinal excitability by using multimodal conditioning paradigms of combined somatosensory electrical and visual stimulation to understand the sensory-motor integration.
Methods
We examined motor evoked potentials (MEP) obtained by using transcranial magnetic stimulation (TMS) that were conditioned by using a single goggle–light-emitting diode (LED) stimulation, peripheral nerve electrical stimulation (short latency afferent inhibition protocol), or a combination of both (goggle-LED+electrical stimulation) at different interstimulus intervals (ISIs) in 14 healthy volunteers.
Results
We found MEP inhibition at ISIs of 50–60 ms using the conditioned goggle-LED stimulation. The combined goggle-LED stimulation at a 60 ms ISI resulted in an additional inhibition to the electrical stimulation.
Conclusions
Visual inputs cause significant modulatory effects on the corticospinal excitability. Combined visual and somatosensory stimuli integrate probably via different neural circuits and/or interneuron populations. To our knowledge, multimodal integration of visual and somatosensory inputs by using TMS-short latency inhibition protocol have been evaluated via electrophysiological methods for the first time in this study.
期刊介绍:
Neurophysiologie Clinique / Clinical Neurophysiology (NCCN) is the official organ of the French Society of Clinical Neurophysiology (SNCLF). This journal is published 6 times a year, and is aimed at an international readership, with articles written in English. These can take the form of original research papers, comprehensive review articles, viewpoints, short communications, technical notes, editorials or letters to the Editor. The theme is the neurophysiological investigation of central or peripheral nervous system or muscle in healthy humans or patients. The journal focuses on key areas of clinical neurophysiology: electro- or magneto-encephalography, evoked potentials of all modalities, electroneuromyography, sleep, pain, posture, balance, motor control, autonomic nervous system, cognition, invasive and non-invasive neuromodulation, signal processing, bio-engineering, functional imaging.