Impact of seed amplification assay and surface-enhanced Raman spectroscopy combined approach on the clinical diagnosis of Alzheimer's disease.

IF 10.8 1区 医学 Q1 NEUROSCIENCES Translational Neurodegeneration Pub Date : 2023-07-12 DOI:10.1186/s40035-023-00367-9
Cristiano D'Andrea, Federico Angelo Cazzaniga, Edoardo Bistaffa, Andrea Barucci, Marella de Angelis, Martina Banchelli, Edoardo Farnesi, Panagis Polykretis, Chiara Marzi, Antonio Indaco, Pietro Tiraboschi, Giorgio Giaccone, Paolo Matteini, Fabio Moda
{"title":"Impact of seed amplification assay and surface-enhanced Raman spectroscopy combined approach on the clinical diagnosis of Alzheimer's disease.","authors":"Cristiano D'Andrea,&nbsp;Federico Angelo Cazzaniga,&nbsp;Edoardo Bistaffa,&nbsp;Andrea Barucci,&nbsp;Marella de Angelis,&nbsp;Martina Banchelli,&nbsp;Edoardo Farnesi,&nbsp;Panagis Polykretis,&nbsp;Chiara Marzi,&nbsp;Antonio Indaco,&nbsp;Pietro Tiraboschi,&nbsp;Giorgio Giaccone,&nbsp;Paolo Matteini,&nbsp;Fabio Moda","doi":"10.1186/s40035-023-00367-9","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>The current diagnosis of Alzheimer's disease (AD) is based on a series of analyses which involve clinical, instrumental and laboratory findings. However, signs, symptoms and biomarker alterations observed in AD might overlap with other dementias, resulting in misdiagnosis.</p><p><strong>Methods: </strong>Here we describe a new diagnostic approach for AD which takes advantage of the boosted sensitivity in biomolecular detection, as allowed by seed amplification assay (SAA), combined with the unique specificity in biomolecular recognition, as provided by surface-enhanced Raman spectroscopy (SERS).</p><p><strong>Results: </strong>The SAA-SERS approach supported by machine learning data analysis allowed efficient identification of pathological Aβ oligomers in the cerebrospinal fluid of patients with a clinical diagnosis of AD or mild cognitive impairment due to AD.</p><p><strong>Conclusions: </strong>Such analytical approach can be used to recognize disease features, thus allowing early stratification and selection of patients, which is fundamental in clinical treatments and pharmacological trials.</p>","PeriodicalId":23269,"journal":{"name":"Translational Neurodegeneration","volume":"12 1","pages":"35"},"PeriodicalIF":10.8000,"publicationDate":"2023-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10337059/pdf/","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Translational Neurodegeneration","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s40035-023-00367-9","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 1

Abstract

Background: The current diagnosis of Alzheimer's disease (AD) is based on a series of analyses which involve clinical, instrumental and laboratory findings. However, signs, symptoms and biomarker alterations observed in AD might overlap with other dementias, resulting in misdiagnosis.

Methods: Here we describe a new diagnostic approach for AD which takes advantage of the boosted sensitivity in biomolecular detection, as allowed by seed amplification assay (SAA), combined with the unique specificity in biomolecular recognition, as provided by surface-enhanced Raman spectroscopy (SERS).

Results: The SAA-SERS approach supported by machine learning data analysis allowed efficient identification of pathological Aβ oligomers in the cerebrospinal fluid of patients with a clinical diagnosis of AD or mild cognitive impairment due to AD.

Conclusions: Such analytical approach can be used to recognize disease features, thus allowing early stratification and selection of patients, which is fundamental in clinical treatments and pharmacological trials.

Abstract Image

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
种子扩增试验和表面增强拉曼光谱联合方法对阿尔茨海默病临床诊断的影响。
背景:目前阿尔茨海默病(AD)的诊断是基于一系列的分析,包括临床,仪器和实验室结果。然而,在阿尔茨海默氏症中观察到的体征、症状和生物标志物改变可能与其他痴呆症重叠,从而导致误诊。方法:本文描述了一种新的AD诊断方法,该方法利用种子扩增试验(SAA)提高的生物分子检测灵敏度,结合表面增强拉曼光谱(SERS)提供的生物分子识别的独特特异性。结果:机器学习数据分析支持的SAA-SERS方法可以有效识别临床诊断为AD或AD引起的轻度认知障碍患者脑脊液中的病理性a β低聚物。结论:这种分析方法可以识别疾病特征,从而对患者进行早期分层和选择,是临床治疗和药理试验的基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Translational Neurodegeneration
Translational Neurodegeneration Neuroscience-Cognitive Neuroscience
CiteScore
19.50
自引率
0.80%
发文量
44
审稿时长
10 weeks
期刊介绍: Translational Neurodegeneration, an open-access, peer-reviewed journal, addresses all aspects of neurodegenerative diseases. It serves as a prominent platform for research, therapeutics, and education, fostering discussions and insights across basic, translational, and clinical research domains. Covering Parkinson's disease, Alzheimer's disease, and other neurodegenerative conditions, it welcomes contributions on epidemiology, pathogenesis, diagnosis, prevention, drug development, rehabilitation, and drug delivery. Scientists, clinicians, and physician-scientists are encouraged to share their work in this specialized journal tailored to their fields.
期刊最新文献
N-terminus α-synuclein detection reveals new and more diverse aggregate morphologies in multiple system atrophy and Parkinson's disease. SARS-CoV-2 membrane protein induces neurodegeneration via affecting Golgi-mitochondria interaction. Endosomal traffic disorders: a driving force behind neurodegenerative diseases. Inflammasomes in neurodegenerative diseases. CD2AP deficiency aggravates Alzheimer's disease phenotypes and pathology through p38 MAPK activation.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1