Development of a computational-experimental framework for enhanced mechanical characterization and cross-species comparison of the articular cartilage superficial zone.

IF 1.7 4区 医学 Q3 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Computer Methods in Biomechanics and Biomedical Engineering Pub Date : 2024-10-01 Epub Date: 2023-09-09 DOI:10.1080/10255842.2023.2255712
Steven P Mell, Catherine Yuh, Thomas Nagel, Susan Chubinskaya, Hannah J Lundberg, Markus A Wimmer
{"title":"Development of a computational-experimental framework for enhanced mechanical characterization and cross-species comparison of the articular cartilage superficial zone.","authors":"Steven P Mell, Catherine Yuh, Thomas Nagel, Susan Chubinskaya, Hannah J Lundberg, Markus A Wimmer","doi":"10.1080/10255842.2023.2255712","DOIUrl":null,"url":null,"abstract":"<p><p>To provide a better understanding of the contribution of specific constituents (i.e. proteoglycan, collagen, fluid) to the mechanical behavior of the superficial zone of articular cartilage, a complex biological tissue with several time-dependent properties, a finite element model was developed. Optimization was then used to fit the model to microindentation experiments. We used this model to compare superficial zone material properties of mature human vs. immature bovine articular cartilage. Non-linearity and stiffness of the fiber-reinforced component of the model differed between human and bovine tissue. This may be due to the more complex collagen architecture in mature tissue and is of interest to investigate in future work.</p>","PeriodicalId":50640,"journal":{"name":"Computer Methods in Biomechanics and Biomedical Engineering","volume":null,"pages":null},"PeriodicalIF":1.7000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10924071/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Methods in Biomechanics and Biomedical Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/10255842.2023.2255712","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/9/9 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

To provide a better understanding of the contribution of specific constituents (i.e. proteoglycan, collagen, fluid) to the mechanical behavior of the superficial zone of articular cartilage, a complex biological tissue with several time-dependent properties, a finite element model was developed. Optimization was then used to fit the model to microindentation experiments. We used this model to compare superficial zone material properties of mature human vs. immature bovine articular cartilage. Non-linearity and stiffness of the fiber-reinforced component of the model differed between human and bovine tissue. This may be due to the more complex collagen architecture in mature tissue and is of interest to investigate in future work.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
开发一个计算实验框架,用于增强关节软骨浅区的力学特性和跨物种比较。
为了更好地了解特定成分(即蛋白多糖、胶原蛋白、流体)对关节软骨浅表区力学行为的贡献,开发了一个有限元模型。关节软骨是一种具有多种时间依赖特性的复杂生物组织。然后使用优化来将模型与显微压痕实验相匹配。我们使用这个模型来比较成熟的人和未成熟的牛关节软骨的浅表区材料特性。该模型的纤维增强部件的非线性和刚度在人和牛组织之间存在差异。这可能是由于成熟组织中更复杂的胶原结构,有兴趣在未来的工作中进行研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
4.10
自引率
6.20%
发文量
179
审稿时长
4-8 weeks
期刊介绍: The primary aims of Computer Methods in Biomechanics and Biomedical Engineering are to provide a means of communicating the advances being made in the areas of biomechanics and biomedical engineering and to stimulate interest in the continually emerging computer based technologies which are being applied in these multidisciplinary subjects. Computer Methods in Biomechanics and Biomedical Engineering will also provide a focus for the importance of integrating the disciplines of engineering with medical technology and clinical expertise. Such integration will have a major impact on health care in the future.
期刊最新文献
Accurate detection of gait events using neural networks and IMU data mimicking real-world smartphone usage. Exploring coronavirus sequence motifs through convolutional neural network for accurate identification of COVID-19. Coexistence of horizontal bone loss and dehiscence with the bundle and conventional fiber post: a finite element analysis. Effects of a soft back exoskeleton on lower lumbar spine loads during manual materials handling: a musculoskeletal modelling study. Mechanical effect of taper position in abutment hole and screw taper angles on implant system and peri-implant tissue: a finite element analysis.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1