Population genetic polymorphisms of pharmacogenes in Zimbabwe, a potential guide for the safe and efficacious use of medicines in people of African ancestry.
Bianza T Mbavha, Comfort R Kanji, Nadina Stadler, Julia Stingl, Andrea Stanglmair, Catharina Scholl, William Wekwete, Collen Masimirembwa
{"title":"Population genetic polymorphisms of pharmacogenes in Zimbabwe, a potential guide for the safe and efficacious use of medicines in people of African ancestry.","authors":"Bianza T Mbavha, Comfort R Kanji, Nadina Stadler, Julia Stingl, Andrea Stanglmair, Catharina Scholl, William Wekwete, Collen Masimirembwa","doi":"10.1097/FPC.0000000000000467","DOIUrl":null,"url":null,"abstract":"<p><strong>Objective: </strong>Pharmacogenomics (PGx) is a clinically significant factor in the safe and efficacious use of medicines. While PGx knowledge is abundant for other populations, there are scarce PGx data on African populations and is little knowledge on drug-gene interactions for medicines used to treat diseases common in Africa. The aim of this study was to use a custom-designed open array to genotype clinically actionable variants in a Zimbabwean population. This study also identified some of the commonly used drugs in Zimbabwe and the associated genes involved in their metabolism.</p><p><strong>Methods: </strong>A custom-designed open array that covers 120 genetic variants was used to genotype 522 black Zimbabwean healthy volunteers using TaqMan-based single nucleotide polymorphism genotyping. Data were also accessed from Essential Drugs' List in Zimbabwe (EDLIZ), and the medicines were grouped into the associated biomarker groups based on their metabolism. We also estimated the national drug procurement levels for medicines that could benefit from PGx-guided use based on the data obtained from the national authorities in Zimbabwe.</p><p><strong>Results: </strong>The results demonstrate the applicability of an open-array chip in simultaneously determining multiple genetic variants in an individual, thus significantly reducing cost and time to generate PGx data. There were significantly high frequencies of African-specific variants, such as the CYP2D6*17 and *29 variants and the CYP2B6*18 variant. The data obtained showed that the Zimbabwean population exhibits PGx variations in genes important for the safe and efficacious use of drugs approved by the EDLIZ and are procured at significantly large amounts annually. The study has established a cohort of genotyped healthy volunteers that can be accessed and used in the conduct of clinical pharmacogenetic studies for drugs entering a market of people of predominantly African ancestry.</p><p><strong>Conclusion: </strong>Our study demonstrated the potential benefit of integrating PGx in Zimbabwe for the safe and efficacious use of drugs that are commonly used.</p>","PeriodicalId":19763,"journal":{"name":"Pharmacogenetics and genomics","volume":"32 5","pages":"173-182"},"PeriodicalIF":1.7000,"publicationDate":"2022-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pharmacogenetics and genomics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1097/FPC.0000000000000467","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 4
Abstract
Objective: Pharmacogenomics (PGx) is a clinically significant factor in the safe and efficacious use of medicines. While PGx knowledge is abundant for other populations, there are scarce PGx data on African populations and is little knowledge on drug-gene interactions for medicines used to treat diseases common in Africa. The aim of this study was to use a custom-designed open array to genotype clinically actionable variants in a Zimbabwean population. This study also identified some of the commonly used drugs in Zimbabwe and the associated genes involved in their metabolism.
Methods: A custom-designed open array that covers 120 genetic variants was used to genotype 522 black Zimbabwean healthy volunteers using TaqMan-based single nucleotide polymorphism genotyping. Data were also accessed from Essential Drugs' List in Zimbabwe (EDLIZ), and the medicines were grouped into the associated biomarker groups based on their metabolism. We also estimated the national drug procurement levels for medicines that could benefit from PGx-guided use based on the data obtained from the national authorities in Zimbabwe.
Results: The results demonstrate the applicability of an open-array chip in simultaneously determining multiple genetic variants in an individual, thus significantly reducing cost and time to generate PGx data. There were significantly high frequencies of African-specific variants, such as the CYP2D6*17 and *29 variants and the CYP2B6*18 variant. The data obtained showed that the Zimbabwean population exhibits PGx variations in genes important for the safe and efficacious use of drugs approved by the EDLIZ and are procured at significantly large amounts annually. The study has established a cohort of genotyped healthy volunteers that can be accessed and used in the conduct of clinical pharmacogenetic studies for drugs entering a market of people of predominantly African ancestry.
Conclusion: Our study demonstrated the potential benefit of integrating PGx in Zimbabwe for the safe and efficacious use of drugs that are commonly used.
期刊介绍:
Pharmacogenetics and Genomics is devoted to the rapid publication of research papers, brief review articles and short communications on genetic determinants in response to drugs and other chemicals in humans and animals. The Journal brings together papers from the entire spectrum of biomedical research and science, including biochemistry, bioinformatics, clinical pharmacology, clinical pharmacy, epidemiology, genetics, genomics, molecular biology, pharmacology, pharmaceutical sciences, and toxicology. Under a single cover, the Journal provides a forum for all aspects of the genetics and genomics of host response to exogenous chemicals: from the gene to the clinic.