Endothelial Cells and the Cerebral Circulation.

IF 4.2 2区 医学 Q1 PHYSIOLOGY Comprehensive Physiology Pub Date : 2022-06-29 DOI:10.1002/cphy.c210015
Theresa A Lansdell, Laura C Chambers, Anne M Dorrance
{"title":"Endothelial Cells and the Cerebral Circulation.","authors":"Theresa A Lansdell,&nbsp;Laura C Chambers,&nbsp;Anne M Dorrance","doi":"10.1002/cphy.c210015","DOIUrl":null,"url":null,"abstract":"<p><p>Endothelial cells form the innermost layer of all blood vessels and are the only vascular component that remains throughout all vascular segments. The cerebral vasculature has several unique properties not found in the peripheral circulation; this requires that the cerebral endothelium be considered as a unique entity. Cerebral endothelial cells perform several functions vital for brain health. The cerebral vasculature is responsible for protecting the brain from external threats carried in the blood. The endothelial cells are central to this requirement as they form the basis of the blood-brain barrier. The endothelium also regulates fibrinolysis, thrombosis, platelet activation, vascular permeability, metabolism, catabolism, inflammation, and white cell trafficking. Endothelial cells regulate the changes in vascular structure caused by angiogenesis and artery remodeling. Further, the endothelium contributes to vascular tone, allowing proper perfusion of the brain which has high energy demands and no energy stores. In this article, we discuss the basic anatomy and physiology of the cerebral endothelium. Where appropriate, we discuss the detrimental effects of high blood pressure on the cerebral endothelium and the contribution of cerebrovascular disease endothelial dysfunction and dementia. © 2022 American Physiological Society. Compr Physiol 12:3449-3508, 2022.</p>","PeriodicalId":10573,"journal":{"name":"Comprehensive Physiology","volume":null,"pages":null},"PeriodicalIF":4.2000,"publicationDate":"2022-06-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Comprehensive Physiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1002/cphy.c210015","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Endothelial cells form the innermost layer of all blood vessels and are the only vascular component that remains throughout all vascular segments. The cerebral vasculature has several unique properties not found in the peripheral circulation; this requires that the cerebral endothelium be considered as a unique entity. Cerebral endothelial cells perform several functions vital for brain health. The cerebral vasculature is responsible for protecting the brain from external threats carried in the blood. The endothelial cells are central to this requirement as they form the basis of the blood-brain barrier. The endothelium also regulates fibrinolysis, thrombosis, platelet activation, vascular permeability, metabolism, catabolism, inflammation, and white cell trafficking. Endothelial cells regulate the changes in vascular structure caused by angiogenesis and artery remodeling. Further, the endothelium contributes to vascular tone, allowing proper perfusion of the brain which has high energy demands and no energy stores. In this article, we discuss the basic anatomy and physiology of the cerebral endothelium. Where appropriate, we discuss the detrimental effects of high blood pressure on the cerebral endothelium and the contribution of cerebrovascular disease endothelial dysfunction and dementia. © 2022 American Physiological Society. Compr Physiol 12:3449-3508, 2022.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
内皮细胞与脑循环。
内皮细胞形成所有血管的最内层,是贯穿所有血管节段的唯一血管成分。脑血管系统具有外周循环所没有的一些独特特性;这就要求将脑内皮视为一个独特的实体。脑内皮细胞对大脑健康起着至关重要的作用。脑血管系统负责保护大脑免受血液中携带的外部威胁。内皮细胞是这一要求的核心,因为它们构成了血脑屏障的基础。内皮也调节纤维蛋白溶解、血栓形成、血小板活化、血管通透性、代谢、分解代谢、炎症和白细胞运输。内皮细胞调节血管生成和动脉重塑引起的血管结构变化。此外,内皮有助于血管张力,允许大脑的适当灌注,这是高能量需求和没有能量储存。本文讨论了脑内皮的基本解剖和生理。在适当的情况下,我们讨论高血压对脑内皮的有害影响以及脑血管疾病内皮功能障碍和痴呆的贡献。©2022美国生理学会。中国生物医学工程学报(英文版),2016。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
10.50
自引率
0.00%
发文量
38
审稿时长
6-12 weeks
期刊介绍: Comprehensive Physiology is the most authoritative and comprehensive collection of physiology information ever assembled, and uses the most powerful features of review journals and electronic reference works to cover the latest key developments in the field, through the most authoritative articles on the subjects covered. This makes Comprehensive Physiology a valued reference work on the evolving science of physiology for both researchers and clinicians. It also provides a useful teaching tool for instructors and an informative resource for medical students and other students in the life and health sciences.
期刊最新文献
Function and Regulation of Bone Marrow Adipose Tissue in Health and Disease: State of the Field and Clinical Considerations. Human Gut Microbiota in Cardiovascular Disease. The Human Microbiome-A Physiologic Perspective. A TRP to Pathological Angiogenesis and Vascular Normalization. Epithelial Na + Channels Function as Extracellular Sensors.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1