Using Bayesian hierarchical models for controlled post hoc subgroup analysis of clinical trials: application to smoking cessation treatment in American Indians and Alaska Natives.
Elena Shergina, Kimber P Richter, Christine Makosky Daley, Babalola Faseru, Won S Choi, Byron J Gajewski
{"title":"Using Bayesian hierarchical models for controlled post hoc subgroup analysis of clinical trials: application to smoking cessation treatment in American Indians and Alaska Natives.","authors":"Elena Shergina, Kimber P Richter, Christine Makosky Daley, Babalola Faseru, Won S Choi, Byron J Gajewski","doi":"10.1080/10543406.2023.2233598","DOIUrl":null,"url":null,"abstract":"<p><p>Clinical trials powered to detect subgroup effects provide the most reliable data on heterogeneity of treatment effect among different subpopulations. However, pre-specified subgroup analysis is not always practical and post hoc analysis results should be examined cautiously. Bayesian hierarchical modelling provides grounds for defining a controlled post hoc analysis plan that is developed after seeing outcome data for the population but before unblinding the outcome by subgroup. Using simulation based on the results from a tobacco cessation clinical trial conducted among the general population, we defined an analysis plan to assess treatment effect among American Indians and Alaska Natives (AI/AN) enrolled in the study. Patients were randomized into two arms using Bayesian adaptive design. For the opt-in arm, clinicians offered a cessation treatment plan after verifying that a patient was ready to quit. For the opt-out arm, clinicians provided all participants with free cessation medications and referred them to a Quitline. The study was powered to test a hypothesis of significantly higher quit rates for the opt-out arm at one-month post randomization. Overall, one-month abstinence rates were 15.9% and 21.5% (opt-in and opt-out arm, respectively). For AI/AN, one-month abstinence rates were 10.2% and 22.0% (opt-in and opt-out arm, respectively). The posterior probability that the abstinence rate in the treatment arm is higher is 0.96, indicating that AI/AN demonstrate response to treatment at almost the same probability as the whole population.</p>","PeriodicalId":54870,"journal":{"name":"Journal of Biopharmaceutical Statistics","volume":" ","pages":"513-525"},"PeriodicalIF":1.2000,"publicationDate":"2024-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10771533/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biopharmaceutical Statistics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/10543406.2023.2233598","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/7/7 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0
Abstract
Clinical trials powered to detect subgroup effects provide the most reliable data on heterogeneity of treatment effect among different subpopulations. However, pre-specified subgroup analysis is not always practical and post hoc analysis results should be examined cautiously. Bayesian hierarchical modelling provides grounds for defining a controlled post hoc analysis plan that is developed after seeing outcome data for the population but before unblinding the outcome by subgroup. Using simulation based on the results from a tobacco cessation clinical trial conducted among the general population, we defined an analysis plan to assess treatment effect among American Indians and Alaska Natives (AI/AN) enrolled in the study. Patients were randomized into two arms using Bayesian adaptive design. For the opt-in arm, clinicians offered a cessation treatment plan after verifying that a patient was ready to quit. For the opt-out arm, clinicians provided all participants with free cessation medications and referred them to a Quitline. The study was powered to test a hypothesis of significantly higher quit rates for the opt-out arm at one-month post randomization. Overall, one-month abstinence rates were 15.9% and 21.5% (opt-in and opt-out arm, respectively). For AI/AN, one-month abstinence rates were 10.2% and 22.0% (opt-in and opt-out arm, respectively). The posterior probability that the abstinence rate in the treatment arm is higher is 0.96, indicating that AI/AN demonstrate response to treatment at almost the same probability as the whole population.
期刊介绍:
The Journal of Biopharmaceutical Statistics, a rapid publication journal, discusses quality applications of statistics in biopharmaceutical research and development. Now publishing six times per year, it includes expositions of statistical methodology with immediate applicability to biopharmaceutical research in the form of full-length and short manuscripts, review articles, selected/invited conference papers, short articles, and letters to the editor. Addressing timely and provocative topics important to the biostatistical profession, the journal covers:
Drug, device, and biological research and development;
Drug screening and drug design;
Assessment of pharmacological activity;
Pharmaceutical formulation and scale-up;
Preclinical safety assessment;
Bioavailability, bioequivalence, and pharmacokinetics;
Phase, I, II, and III clinical development including complex innovative designs;
Premarket approval assessment of clinical safety;
Postmarketing surveillance;
Big data and artificial intelligence and applications.