{"title":"Structures of Adrenoceptors.","authors":"Lukas Helfinger, Christopher G Tate","doi":"10.1007/164_2023_674","DOIUrl":null,"url":null,"abstract":"<p><p>The first structure of an adrenoceptor (AR), the human β<sub>2</sub>-adrenoceptor (hβ<sub>2</sub>AR) was published in 2007 and since then a total of 78 structures (up to June 2022) have been determined by X-ray crystallography and electron cryo-microscopy (cryo-EM) of all three βARs (β<sub>1</sub>, β<sub>2</sub> and β<sub>3</sub>) and four out of six αARs (α<sub>1B</sub>, α<sub>2A</sub>, α<sub>2B</sub>, α<sub>2C</sub>). The structures are in a number of different conformational states, including the inactive state bound to an antagonist, an intermediate state bound to agonist and active states bound to agonist and an intracellular transducer (G protein or arrestin) or transducer mimetic (nanobody). The structures identify molecular details of how ligands bind in the orthosteric binding pocket (OBP; 19 antagonists, 18 agonists) and also how three different small molecule allosteric modulators bind. The structures have been used to define the molecular details of receptor activation and also the molecular determinants for transducer coupling. This chapter will give a brief overview of the structures, receptor activation, a comparison across the different subfamilies and commonalities of ligand-receptor interactions.</p>","PeriodicalId":12859,"journal":{"name":"Handbook of experimental pharmacology","volume":" ","pages":"13-26"},"PeriodicalIF":0.0000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Handbook of experimental pharmacology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/164_2023_674","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Pharmacology, Toxicology and Pharmaceutics","Score":null,"Total":0}
引用次数: 0
Abstract
The first structure of an adrenoceptor (AR), the human β2-adrenoceptor (hβ2AR) was published in 2007 and since then a total of 78 structures (up to June 2022) have been determined by X-ray crystallography and electron cryo-microscopy (cryo-EM) of all three βARs (β1, β2 and β3) and four out of six αARs (α1B, α2A, α2B, α2C). The structures are in a number of different conformational states, including the inactive state bound to an antagonist, an intermediate state bound to agonist and active states bound to agonist and an intracellular transducer (G protein or arrestin) or transducer mimetic (nanobody). The structures identify molecular details of how ligands bind in the orthosteric binding pocket (OBP; 19 antagonists, 18 agonists) and also how three different small molecule allosteric modulators bind. The structures have been used to define the molecular details of receptor activation and also the molecular determinants for transducer coupling. This chapter will give a brief overview of the structures, receptor activation, a comparison across the different subfamilies and commonalities of ligand-receptor interactions.
期刊介绍:
The Handbook of Experimental Pharmacology is one of the most authoritative and influential book series in pharmacology. It provides critical and comprehensive discussions of the most significant areas of pharmacological research, written by leading international authorities. Each volume in the series represents the most informative and contemporary account of its subject available, making it an unrivalled reference source.