Force adaptation through the intravenous route in naïve mice.

IF 1.5 4区 医学 Q3 RESPIRATORY SYSTEM Experimental Lung Research Pub Date : 2023-01-01 DOI:10.1080/01902148.2023.2237127
Magali Boucher, Cyndi Henry, Ynuk Bossé
{"title":"Force adaptation through the intravenous route in naïve mice.","authors":"Magali Boucher,&nbsp;Cyndi Henry,&nbsp;Ynuk Bossé","doi":"10.1080/01902148.2023.2237127","DOIUrl":null,"url":null,"abstract":"<p><p><b>Aim of the study:</b> Force adaptation is a process whereby the contractile capacity of the airway smooth muscle increases during a sustained contraction (aka tone). Tone also increases the response to a nebulized challenge with methacholine <i>in vivo</i>, presumably through force adaptation. Yet, due to its patchy pattern of deposition, nebulized methacholine often spurs small airway narrowing heterogeneity and closure, two important enhancers of the methacholine response. This raises the possibility that the potentiating effect of tone on the methacholine response is not due to force adaptation but by furthering heterogeneity and closure. Herein, methacholine was delivered homogenously through the intravenous (i.v.) route. <b>Materials and Methods:</b> Female and male BALB/c mice were subjected to one of two i.v. methacholine challenges, each of the same cumulative dose but starting by a 20-min period either with or without tone induced by serial i.v. boluses. Changes in respiratory mechanics were monitored throughout by oscillometry, and the response after the final dose was compared between the two challenges to assess the effect of tone. <b>Results:</b> For the elastance of the respiratory system (E<sub>rs</sub>), tone potentiated the methacholine response by 64 and 405% in females (37.4 ± 10.7 <i>vs.</i> 61.5 ± 15.1 cmH<sub>2</sub>O/mL; <i>p</i> = 0.01) and males (33.0 ± 14.3 <i>vs.</i> 166.7 ± 60.6 cmH<sub>2</sub>O/mL; <i>p</i> = 0.0004), respectively. For the resistance of the respiratory system (R<sub>rs</sub>), tone potentiated the methacholine response by 129 and 225% in females (9.7 ± 3.5 <i>vs.</i> 22.2 ± 4.3 cmH<sub>2</sub>O·s/mL; <i>p</i> = 0.0003) and males (10.7 ± 3.1 <i>vs.</i> 34.7 ± 7.9 cmH<sub>2</sub>O·s/mL; <i>p</i> < 0.0001), respectively. <b>Conclusions:</b> As previously reported with nebulized challenges, tone increases the response to i.v. methacholine in both sexes; albeit sexual dimorphisms were obvious regarding the relative resistive <i>versus</i> elastic nature of this potentiation. This represents further support that tone increases the lung response to methacholine through force adaptation.</p>","PeriodicalId":12206,"journal":{"name":"Experimental Lung Research","volume":"49 1","pages":"131-141"},"PeriodicalIF":1.5000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Experimental Lung Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/01902148.2023.2237127","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"RESPIRATORY SYSTEM","Score":null,"Total":0}
引用次数: 0

Abstract

Aim of the study: Force adaptation is a process whereby the contractile capacity of the airway smooth muscle increases during a sustained contraction (aka tone). Tone also increases the response to a nebulized challenge with methacholine in vivo, presumably through force adaptation. Yet, due to its patchy pattern of deposition, nebulized methacholine often spurs small airway narrowing heterogeneity and closure, two important enhancers of the methacholine response. This raises the possibility that the potentiating effect of tone on the methacholine response is not due to force adaptation but by furthering heterogeneity and closure. Herein, methacholine was delivered homogenously through the intravenous (i.v.) route. Materials and Methods: Female and male BALB/c mice were subjected to one of two i.v. methacholine challenges, each of the same cumulative dose but starting by a 20-min period either with or without tone induced by serial i.v. boluses. Changes in respiratory mechanics were monitored throughout by oscillometry, and the response after the final dose was compared between the two challenges to assess the effect of tone. Results: For the elastance of the respiratory system (Ers), tone potentiated the methacholine response by 64 and 405% in females (37.4 ± 10.7 vs. 61.5 ± 15.1 cmH2O/mL; p = 0.01) and males (33.0 ± 14.3 vs. 166.7 ± 60.6 cmH2O/mL; p = 0.0004), respectively. For the resistance of the respiratory system (Rrs), tone potentiated the methacholine response by 129 and 225% in females (9.7 ± 3.5 vs. 22.2 ± 4.3 cmH2O·s/mL; p = 0.0003) and males (10.7 ± 3.1 vs. 34.7 ± 7.9 cmH2O·s/mL; p < 0.0001), respectively. Conclusions: As previously reported with nebulized challenges, tone increases the response to i.v. methacholine in both sexes; albeit sexual dimorphisms were obvious regarding the relative resistive versus elastic nature of this potentiation. This represents further support that tone increases the lung response to methacholine through force adaptation.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
在天真的小鼠中通过静脉途径强制适应。
研究目的:力适应是气道平滑肌在持续收缩(也称为张力)过程中收缩能力增加的过程。Tone还增加了体内对乙酰甲胆碱雾化挑战的反应,可能是通过力量适应。然而,由于其斑块状沉积模式,雾化吸入的乙酰甲胆碱经常刺激小气道狭窄的异质性和闭合,这是乙酰甲胆碱反应的两个重要增强因子。这增加了一种可能性,即音调对乙酰甲胆碱反应的增强作用不是由于力量适应,而是由于进一步的异质性和封闭性。在此,通过静脉注射(i.v.)途径均匀地递送乙酰甲胆碱。材料和方法:雌性和雄性BALB/c小鼠接受两次静脉注射乙酰甲胆碱挑战中的一次,每次的累积剂量相同,但从20分钟开始,无论是否有连续静脉注射引起的张力。通过示波法全程监测呼吸力学的变化,并比较两次挑战后的反应,以评估音调的影响。结果:对于呼吸系统(Ers)的弹性,tone使女性的乙酰甲胆碱反应增强了64%和405%(37.4 ± 10.7对61.5 ± 15.1 cmH2O/mL;p = 0.01)和男性(33.0 ± 14.3对166.7 ± 60.6 cmH2O/mL;p = 0.0004)。对于呼吸系统的抵抗力(Rs),tone使雌性的乙酰甲胆碱反应分别增强了129%和225%(9.7 ± 3.5对22.2 ± 4.3 cmH2O·s/mL;p = 0.0003)和男性(10.7 ± 3.1对34.7 ± 7.9 cmH2O·s/mL;p 结论:正如先前报道的雾化激发一样,音调在两性中都会增加对静脉注射乙酰甲胆碱的反应;尽管在这种增强的相对阻力与弹性性质方面,性畸形是明显的。这代表了进一步的支持,即音调通过力量适应增加了肺部对乙酰甲胆碱的反应。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Experimental Lung Research
Experimental Lung Research 医学-呼吸系统
CiteScore
3.80
自引率
0.00%
发文量
23
审稿时长
2 months
期刊介绍: Experimental Lung Research publishes original articles in all fields of respiratory tract anatomy, biology, developmental biology, toxicology, and pathology. Emphasis is placed on investigations concerned with molecular, biochemical, and cellular mechanisms of normal function, pathogenesis, and responses to injury. The journal publishes reports on important methodological advances on new experimental modes. Also published are invited reviews on important and timely research advances, as well as proceedings of specialized symposia. Authors can choose to publish gold open access in this journal.
期刊最新文献
Involvement of PRDX6 in the protective role of MANF in acute lung injury in rats. Exosomes derived from hypoxic alveolar epithelial cells promote the phenotypic transformation of pulmonary artery smooth muscle cells via the Rap1 pathway Treatment with inhaled aerosolised ethanol reduces viral load and potentiates macrophage responses in an established influenza mouse model Inhibition of GBP5 activates autophagy to alleviate inflammatory response in LPS-induced lung injury in mice Differential changes in expression of inflammatory mRNA and protein after oleic acid-induced acute lung injury
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1