{"title":"Irisin attenuates pyroptosis in high glucose-induced pancreatic beta cells via the miR-133a-3p/FOXO1 axis.","authors":"Anjun Tan, Tianrong Li, Jingjing Yang, Jinwen Yu, Hewen Chen","doi":"10.5603/EP.a2023.0035","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>Irisin is closely related to type 2 diabetes mellitus (T2DM) and other metabolic diseases. It can improve the homeostasis of T2DM. MiR-133a-3p is decreased in the peripheral blood of patients with T2DM. Forkhead box protein O1 (FOXO1) is widely expressed in beta-cells and affects the occurrence of diabetes through transcriptional regulation and signalling pathway regulation.</p><p><strong>Material and methods: </strong>The miR-133a-3p inhibitor was constructed to verify the effect of irisin on pyroptosis through miR-133a-3p. Next, we predicted the presence of targeted binding sequences between FOXO1 and miR-133a-3p by bioinformatics software, which was then confirmed with a double fluorescence assay. Finally, the FOXO1 overexpression vector was used to further verify the effect of irisin through the miR-133a-3p/FOXO1 axis.</p><p><strong>Results: </strong>We first observed that irisin inhibited the protein levels of N-terminal gasdermin D (GSDMD-N) and cleaved caspase-1 and the secretion of interleukins (IL): IL-1beta and IL-18 in Min6 cells treated with high glucoes (HG). Irisin inhibited pyroptosis of Min6 cells treated with HG by reinforcing miR-133a-3p. Then, FOXO1 was validated to be the target gene of miR-133a. Both miR-133a-3p inhibitor and overexpression of FOXO1 restrained the force of irisin on pyroptosis in HG-induced Min6 cells.</p><p><strong>Conclusion: </strong>We explored the protective effect of irisin on HG-induced pyroptosis of islet b-cells in vitro and explained its mechanism of inhibiting pyroptosis through the miR-133a-3p/FOXO1 axis, to provide a theoretical basis for finding new molecular targets to delay beta-cell failure and the treatment of T2DM.</p>","PeriodicalId":11551,"journal":{"name":"Endokrynologia Polska","volume":"74 3","pages":"277-284"},"PeriodicalIF":2.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Endokrynologia Polska","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.5603/EP.a2023.0035","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENDOCRINOLOGY & METABOLISM","Score":null,"Total":0}
引用次数: 2
Abstract
Introduction: Irisin is closely related to type 2 diabetes mellitus (T2DM) and other metabolic diseases. It can improve the homeostasis of T2DM. MiR-133a-3p is decreased in the peripheral blood of patients with T2DM. Forkhead box protein O1 (FOXO1) is widely expressed in beta-cells and affects the occurrence of diabetes through transcriptional regulation and signalling pathway regulation.
Material and methods: The miR-133a-3p inhibitor was constructed to verify the effect of irisin on pyroptosis through miR-133a-3p. Next, we predicted the presence of targeted binding sequences between FOXO1 and miR-133a-3p by bioinformatics software, which was then confirmed with a double fluorescence assay. Finally, the FOXO1 overexpression vector was used to further verify the effect of irisin through the miR-133a-3p/FOXO1 axis.
Results: We first observed that irisin inhibited the protein levels of N-terminal gasdermin D (GSDMD-N) and cleaved caspase-1 and the secretion of interleukins (IL): IL-1beta and IL-18 in Min6 cells treated with high glucoes (HG). Irisin inhibited pyroptosis of Min6 cells treated with HG by reinforcing miR-133a-3p. Then, FOXO1 was validated to be the target gene of miR-133a. Both miR-133a-3p inhibitor and overexpression of FOXO1 restrained the force of irisin on pyroptosis in HG-induced Min6 cells.
Conclusion: We explored the protective effect of irisin on HG-induced pyroptosis of islet b-cells in vitro and explained its mechanism of inhibiting pyroptosis through the miR-133a-3p/FOXO1 axis, to provide a theoretical basis for finding new molecular targets to delay beta-cell failure and the treatment of T2DM.
期刊介绍:
"Endokrynologia Polska" publishes papers in English on all aspects of clinical and experimental endocrinology. The following types of papers may be submitted for publication: original articles, reviews, case reports, postgraduate education, letters to the Editor (Readers’ Forum) and announcements of scientific meetings, conferences and congresses.