Ectopic expression of HNF4α in Het1A cells induces an invasive phenotype

IF 2.2 3区 生物学 Q4 CELL BIOLOGY Differentiation Pub Date : 2023-08-23 DOI:10.1016/j.diff.2023.08.003
Carmen Grimaldos Rodriguez , Ella F. Rimmer , Benjamin Colleypriest , David Tosh , Jonathan M.W. Slack , Ute Jungwirth
{"title":"Ectopic expression of HNF4α in Het1A cells induces an invasive phenotype","authors":"Carmen Grimaldos Rodriguez ,&nbsp;Ella F. Rimmer ,&nbsp;Benjamin Colleypriest ,&nbsp;David Tosh ,&nbsp;Jonathan M.W. Slack ,&nbsp;Ute Jungwirth","doi":"10.1016/j.diff.2023.08.003","DOIUrl":null,"url":null,"abstract":"<div><p>Barrett's oesophagus (BO) is a pathological condition in which the squamous epithelium of the distal oesophagus is replaced by an intestinal-like columnar epithelium originating from the gastric cardia. Several somatic mutations contribute to the intestinal-like metaplasia. Once these have occurred in a single cell, it will be unable to expand further unless the altered cell can colonise the surrounding squamous epithelium of the oesophagus. The mechanisms by which this happens are still unknown. Here we have established an <em>in vitro</em> system for examining the competitive behaviour of two epithelia. We find that when an oesophageal epithelium model (Het1A cells) is confronted by an intestinal epithelium model (Caco-2 cells), the intestinal cells expand into the oesophageal domain. In this case the boundary involves overgrowth by the Caco-2 cells and the formation of isolated colonies. Two key transcription factors, normally involved in intestinal development, HNF4α and CDX2, are both expressed in BO. We examined the competitive ability of Het1A cells stably expressing HNF4α or CDX2 and placed in confrontation with unmodified Het1A cells. The key result is that stable expression of HNF4α, but not CDX2, increased the ability of the cells to migrate and push into the unmodified Het1A domain. In this situation the boundary between the cell types is a sharp one, as is normally seen in BO. The experiments were conducted using a variety of extracellular substrates, which all tended to increase the cell migration compared to uncoated plastic. These data provide evidence that HNF4α expression could have a potential role in the competitive spread of BO into the oesophagus as HNF4α increases the ability of cells to invade into the adjacent stratified squamous epithelium, thus enabling a single mutant cell eventually to generate a macroscopic patch of metaplasia.</p></div>","PeriodicalId":50579,"journal":{"name":"Differentiation","volume":null,"pages":null},"PeriodicalIF":2.2000,"publicationDate":"2023-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Differentiation","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0301468123000580","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Barrett's oesophagus (BO) is a pathological condition in which the squamous epithelium of the distal oesophagus is replaced by an intestinal-like columnar epithelium originating from the gastric cardia. Several somatic mutations contribute to the intestinal-like metaplasia. Once these have occurred in a single cell, it will be unable to expand further unless the altered cell can colonise the surrounding squamous epithelium of the oesophagus. The mechanisms by which this happens are still unknown. Here we have established an in vitro system for examining the competitive behaviour of two epithelia. We find that when an oesophageal epithelium model (Het1A cells) is confronted by an intestinal epithelium model (Caco-2 cells), the intestinal cells expand into the oesophageal domain. In this case the boundary involves overgrowth by the Caco-2 cells and the formation of isolated colonies. Two key transcription factors, normally involved in intestinal development, HNF4α and CDX2, are both expressed in BO. We examined the competitive ability of Het1A cells stably expressing HNF4α or CDX2 and placed in confrontation with unmodified Het1A cells. The key result is that stable expression of HNF4α, but not CDX2, increased the ability of the cells to migrate and push into the unmodified Het1A domain. In this situation the boundary between the cell types is a sharp one, as is normally seen in BO. The experiments were conducted using a variety of extracellular substrates, which all tended to increase the cell migration compared to uncoated plastic. These data provide evidence that HNF4α expression could have a potential role in the competitive spread of BO into the oesophagus as HNF4α increases the ability of cells to invade into the adjacent stratified squamous epithelium, thus enabling a single mutant cell eventually to generate a macroscopic patch of metaplasia.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
HNF4α在Het1A细胞中异位表达诱导侵袭表型
巴雷特食管(BO)是一种病理性疾病,其中远端食管的鳞状上皮被源自贲门的肠状柱状上皮取代。几种体细胞突变导致肠样化生。一旦这些发生在单个细胞中,它将无法进一步扩张,除非改变的细胞能够定植在食道周围的鳞状上皮上。发生这种情况的机制仍然未知。在这里,我们建立了一个体外系统来检测两个上皮细胞的竞争行为。我们发现,当食道上皮模型(Het1A细胞)遇到肠上皮模型(Caco-2细胞)时,肠细胞会扩展到食道区域。在这种情况下,边界涉及Caco-2细胞的过度生长和分离菌落的形成。正常参与肠道发育的两个关键转录因子HNF4α和CDX2都在BO中表达。我们检测了稳定表达HNF4α或CDX2的Het1A细胞与未修饰的Het1A细胞对抗的竞争能力。关键的结果是HNF4α而不是CDX2的稳定表达增加了细胞迁移和推入未修饰的Het1A结构域的能力。在这种情况下,细胞类型之间的边界是尖锐的,这在BO中通常可以看到。实验是使用各种细胞外基质进行的,与未涂覆的塑料相比,这些基质都倾向于增加细胞迁移。这些数据提供了证据,表明HNF4α的表达可能在BO向食道的竞争性传播中发挥潜在作用,因为HNF4α增加了细胞侵入邻近复层鳞状上皮的能力,从而使单个突变细胞最终能够产生宏观的化生斑块。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Differentiation
Differentiation 生物-发育生物学
CiteScore
4.10
自引率
3.40%
发文量
38
审稿时长
51 days
期刊介绍: Differentiation is a multidisciplinary journal dealing with topics relating to cell differentiation, development, cellular structure and function, and cancer. Differentiation of eukaryotes at the molecular level and the use of transgenic and targeted mutagenesis approaches to problems of differentiation are of particular interest to the journal. The journal will publish full-length articles containing original work in any of these areas. We will also publish reviews and commentaries on topics of current interest. The principal subject areas the journal covers are: • embryonic patterning and organogenesis • human development and congenital malformation • mechanisms of cell lineage commitment • tissue homeostasis and oncogenic transformation • establishment of cellular polarity • stem cell differentiation • cell reprogramming mechanisms • stability of the differentiated state • cell and tissue interactions in vivo and in vitro • signal transduction pathways in development and differentiation • carcinogenesis and cancer • mechanisms involved in cell growth and division especially relating to cancer • differentiation in regeneration and ageing • therapeutic applications of differentiation processes.
期刊最新文献
AKT from dental epithelium to papilla promotes odontoblast differentiation Effects of a Sertoli cell-specific knockout of Connexin43 on maturation and proliferation of postnatal Sertoli cells Type H vessels in osteogenesis, homeostasis, and related disorders Epithelial-fibroblast interactions in IPF: Lessons from in vitro co-culture studies Editorial Board
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1