María P Gervé, Juan A Sánchez, María C Ingaramo, Andrés Dekanty
{"title":"Myc-regulated miRNAs modulate p53 expression and impact animal survival under nutrient deprivation.","authors":"María P Gervé, Juan A Sánchez, María C Ingaramo, Andrés Dekanty","doi":"10.1371/journal.pgen.1010721","DOIUrl":null,"url":null,"abstract":"<p><p>The conserved transcription factor Myc regulates cell growth, proliferation and apoptosis, and its deregulation has been associated with human pathologies. Although specific miRNAs have been identified as fundamental components of the Myc tumorigenic program, how Myc regulates miRNA biogenesis remains controversial. Here we showed that Myc functions as an important regulator of miRNA biogenesis in Drosophila by influencing both miRNA gene expression and processing. Through the analysis of ChIP-Seq datasets, we discovered that nearly 56% of Drosophila miRNA genes show dMyc binding, exhibiting either the canonical or non-canonical E-box sequences within the peak region. Consistently, reduction of dMyc levels resulted in widespread downregulation of miRNAs gene expression. dMyc also modulates miRNA processing and activity by controlling Drosha and AGO1 levels through direct transcriptional regulation. By using in vivo miRNA activity sensors we demonstrated that dMyc promotes miRNA-mediated silencing in different tissues, including the wing primordium and the fat body. We also showed that dMyc-dependent expression of miR-305 in the fat body modulates Dmp53 levels depending on nutrient availability, having a profound impact on the ability of the organism to respond to nutrient stress. Indeed, dMyc depletion in the fat body resulted in extended survival to nutrient deprivation which was reverted by expression of either miR-305 or a dominant negative version of Dmp53. Our study reveals a previously unrecognized function of dMyc as an important regulator of miRNA biogenesis and suggests that Myc-dependent expression of specific miRNAs may have important tissue-specific functions.</p>","PeriodicalId":20266,"journal":{"name":"PLoS Genetics","volume":"19 8","pages":"e1010721"},"PeriodicalIF":4.5000,"publicationDate":"2023-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10491395/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"PLoS Genetics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1371/journal.pgen.1010721","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/8/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"Agricultural and Biological Sciences","Score":null,"Total":0}
引用次数: 0
Abstract
The conserved transcription factor Myc regulates cell growth, proliferation and apoptosis, and its deregulation has been associated with human pathologies. Although specific miRNAs have been identified as fundamental components of the Myc tumorigenic program, how Myc regulates miRNA biogenesis remains controversial. Here we showed that Myc functions as an important regulator of miRNA biogenesis in Drosophila by influencing both miRNA gene expression and processing. Through the analysis of ChIP-Seq datasets, we discovered that nearly 56% of Drosophila miRNA genes show dMyc binding, exhibiting either the canonical or non-canonical E-box sequences within the peak region. Consistently, reduction of dMyc levels resulted in widespread downregulation of miRNAs gene expression. dMyc also modulates miRNA processing and activity by controlling Drosha and AGO1 levels through direct transcriptional regulation. By using in vivo miRNA activity sensors we demonstrated that dMyc promotes miRNA-mediated silencing in different tissues, including the wing primordium and the fat body. We also showed that dMyc-dependent expression of miR-305 in the fat body modulates Dmp53 levels depending on nutrient availability, having a profound impact on the ability of the organism to respond to nutrient stress. Indeed, dMyc depletion in the fat body resulted in extended survival to nutrient deprivation which was reverted by expression of either miR-305 or a dominant negative version of Dmp53. Our study reveals a previously unrecognized function of dMyc as an important regulator of miRNA biogenesis and suggests that Myc-dependent expression of specific miRNAs may have important tissue-specific functions.
期刊介绍:
PLOS Genetics is run by an international Editorial Board, headed by the Editors-in-Chief, Greg Barsh (HudsonAlpha Institute of Biotechnology, and Stanford University School of Medicine) and Greg Copenhaver (The University of North Carolina at Chapel Hill).
Articles published in PLOS Genetics are archived in PubMed Central and cited in PubMed.