A Comparison of Person-Fit Indices to Detect Social Desirability Bias.

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS ACS Applied Bio Materials Pub Date : 2023-10-01 Epub Date: 2022-10-18 DOI:10.1177/00131644221129577
Sanaz Nazari, Walter L Leite, A Corinne Huggins-Manley
{"title":"A Comparison of Person-Fit Indices to Detect Social Desirability Bias.","authors":"Sanaz Nazari, Walter L Leite, A Corinne Huggins-Manley","doi":"10.1177/00131644221129577","DOIUrl":null,"url":null,"abstract":"<p><p>Social desirability bias (SDB) has been a major concern in educational and psychological assessments when measuring latent variables because it has the potential to introduce measurement error and bias in assessments. Person-fit indices can detect bias in the form of misfitted response vectors. The objective of this study was to compare the performance of 14 person-fit indices to identify SDB in simulated responses. The area under the curve (AUC) of receiver operating characteristic (ROC) curve analysis was computed to evaluate the predictive power of these statistics. The findings showed that the agreement statistic <math><mrow><mo>(</mo><mi>A</mi><mo>)</mo></mrow></math> outperformed all other person-fit indices, while the disagreement statistic <math><mrow><mo>(</mo><mi>D</mi><mo>)</mo></mrow></math>, dependability statistic <math><mrow><mo>(</mo><mi>E</mi><mo>)</mo></mrow></math>, and the number of Guttman errors <math><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></math> also demonstrated high AUCs to detect SDB. Recommendations for practitioners to use these fit indices are provided.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10470160/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"102","ListUrlMain":"https://doi.org/10.1177/00131644221129577","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/10/18 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

Abstract

Social desirability bias (SDB) has been a major concern in educational and psychological assessments when measuring latent variables because it has the potential to introduce measurement error and bias in assessments. Person-fit indices can detect bias in the form of misfitted response vectors. The objective of this study was to compare the performance of 14 person-fit indices to identify SDB in simulated responses. The area under the curve (AUC) of receiver operating characteristic (ROC) curve analysis was computed to evaluate the predictive power of these statistics. The findings showed that the agreement statistic (A) outperformed all other person-fit indices, while the disagreement statistic (D), dependability statistic (E), and the number of Guttman errors (G) also demonstrated high AUCs to detect SDB. Recommendations for practitioners to use these fit indices are provided.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
检测社会期望偏差的人适合指数的比较。
在测量潜在变量时,社会期望偏差(SDB)一直是教育和心理评估中的一个主要问题,因为它有可能在评估中引入测量误差和偏差。个人拟合指数可以检测不匹配响应向量形式的偏差。本研究的目的是比较14个人适合指数的表现,以识别模拟反应中的SDB。计算受试者工作特性(ROC)曲线分析的曲线下面积(AUC),以评估这些统计数据的预测能力。研究结果表明,一致性统计(A)优于所有其他人的拟合指数,而不一致性统计学(D)、可靠性统计(E)和古特曼错误数(G)也显示出检测SDB的高AUC。建议从业者使用这些拟合指数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
期刊最新文献
A Systematic Review of Sleep Disturbance in Idiopathic Intracranial Hypertension. Advancing Patient Education in Idiopathic Intracranial Hypertension: The Promise of Large Language Models. Anti-Myelin-Associated Glycoprotein Neuropathy: Recent Developments. Approach to Managing the Initial Presentation of Multiple Sclerosis: A Worldwide Practice Survey. Association Between LACE+ Index Risk Category and 90-Day Mortality After Stroke.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1