In vitro and in vivo toxicity of carbon dots with different chemical compositions.

0 MATERIALS SCIENCE, MULTIDISCIPLINARY Discover nano Pub Date : 2023-09-08 DOI:10.1186/s11671-023-03891-9
Halyna Kuznietsova, Alain Géloën, Nataliia Dziubenko, Alexander Zaderko, Sergei Alekseev, Vladimir Lysenko, Valeriy Skryshevsky
{"title":"In vitro and in vivo toxicity of carbon dots with different chemical compositions.","authors":"Halyna Kuznietsova, Alain Géloën, Nataliia Dziubenko, Alexander Zaderko, Sergei Alekseev, Vladimir Lysenko, Valeriy Skryshevsky","doi":"10.1186/s11671-023-03891-9","DOIUrl":null,"url":null,"abstract":"<p><p>Carbon dots (CDs) are easy-obtained nanoparticles with wide range of biological activity; however, their toxicity after prolonged exposure is poorly investigated. So, in vitro and in vivo toxicity of CDs with the surfaces enriched with hydroxylated hydrocarbon chains and methylene groups (CD_GE), carboxyl and phenol groups accompanied with nitrogen (CD_3011), trifluoromethyl (CDF19) or toluidine and aniline groups (CDN19) were aimed to be discovered. CDs' in vitro toxicity was assessed on A549 cells (real-time cell analysis of impedance, fluorescence microscopy) after 24 h of incubation, and we observed no changes in cell viability and morphology. CDs' in vivo toxicity was assessed on C57Bl6 mice after multiple dosages (5 mg/kg subcutaneously) for 14 days. Lethality (up to 50%) was observed in CDN19 and CD_3011 groups on different days of dosing, accompanied by toxicity signs in case of CD_3011. There were no changes in serum biochemical parameters except Urea (increased in CDF19 and CD_3011 groups), nor substantial kidney, liver, and spleen injuries. The most impactful for all organs were also CD_3011 and CDF19, causing renal tubule injury and liver blood supply violation. Thus, CDs with a surface enriched with oxygen- and nitrogen-containing functional groups might be toxic after multiple everyday dosing, without, however, significant damages of internal organs in survived animals.</p>","PeriodicalId":72828,"journal":{"name":"Discover nano","volume":"18 1","pages":"111"},"PeriodicalIF":0.0000,"publicationDate":"2023-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10491573/pdf/","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discover nano","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/s11671-023-03891-9","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"0","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 1

Abstract

Carbon dots (CDs) are easy-obtained nanoparticles with wide range of biological activity; however, their toxicity after prolonged exposure is poorly investigated. So, in vitro and in vivo toxicity of CDs with the surfaces enriched with hydroxylated hydrocarbon chains and methylene groups (CD_GE), carboxyl and phenol groups accompanied with nitrogen (CD_3011), trifluoromethyl (CDF19) or toluidine and aniline groups (CDN19) were aimed to be discovered. CDs' in vitro toxicity was assessed on A549 cells (real-time cell analysis of impedance, fluorescence microscopy) after 24 h of incubation, and we observed no changes in cell viability and morphology. CDs' in vivo toxicity was assessed on C57Bl6 mice after multiple dosages (5 mg/kg subcutaneously) for 14 days. Lethality (up to 50%) was observed in CDN19 and CD_3011 groups on different days of dosing, accompanied by toxicity signs in case of CD_3011. There were no changes in serum biochemical parameters except Urea (increased in CDF19 and CD_3011 groups), nor substantial kidney, liver, and spleen injuries. The most impactful for all organs were also CD_3011 and CDF19, causing renal tubule injury and liver blood supply violation. Thus, CDs with a surface enriched with oxygen- and nitrogen-containing functional groups might be toxic after multiple everyday dosing, without, however, significant damages of internal organs in survived animals.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
不同化学成分碳点的体内外毒性研究。
碳点(CDs)是一种易于获得且具有广泛生物活性的纳米颗粒;然而,对其长期接触后的毒性研究甚少。因此,研究表面含有羟基化烃链和亚甲基(CD_GE)、羧基和酚基含氮(CD_3011)、三氟甲基(CDF19)或甲苯胺和苯胺基(CDN19)的CDs的体内外毒性。孵育24 h后对A549细胞进行体外毒性评估(实时细胞阻抗分析,荧光显微镜),未观察到细胞活力和形态的变化。多次给药(5 mg/kg皮下注射)14 d后,观察cd对C57Bl6小鼠的体内毒性。CDN19和CD_3011组在不同给药天数的致死率高达50%,CD_3011组有毒性体征。除尿素(CDF19和CD_3011组升高)外,血清生化指标无明显变化,肾、肝、脾无明显损伤。对各脏器影响最大的也是CD_3011和CDF19,造成肾小管损伤和肝脏血供破坏。因此,表面富含含氧和含氮官能团的cd在多次每日给药后可能是有毒的,但对存活动物的内脏没有明显损害。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
0.70
自引率
0.00%
发文量
0
期刊最新文献
A novel transdermal drug delivery system: drug-loaded ROS-responsive ferrocene fibers for effective photoprotective and wound healing activity. Exploitation of functionalized green nanomaterials for plant disease management. Antimicrobial efficacy of nano-particles for crop protection and sustainable agriculture. Effect of annealing temperature on the optoelectrical synapse behaviors of A-ZnO microtube. Anticandidal applications of selenium nanoparticles biosynthesized with Limosilactobacillus fermentum (OR553490).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1