Beyond ℓ1 sparse coding in V1.

IF 4.3 2区 生物学 PLoS Computational Biology Pub Date : 2023-09-12 eCollection Date: 2023-09-01 DOI:10.1371/journal.pcbi.1011459
Ilias Rentzeperis, Luca Calatroni, Laurent U Perrinet, Dario Prandi
{"title":"Beyond ℓ1 sparse coding in V1.","authors":"Ilias Rentzeperis,&nbsp;Luca Calatroni,&nbsp;Laurent U Perrinet,&nbsp;Dario Prandi","doi":"10.1371/journal.pcbi.1011459","DOIUrl":null,"url":null,"abstract":"<p><p>Growing evidence indicates that only a sparse subset from a pool of sensory neurons is active for the encoding of visual stimuli at any instant in time. Traditionally, to replicate such biological sparsity, generative models have been using the ℓ1 norm as a penalty due to its convexity, which makes it amenable to fast and simple algorithmic solvers. In this work, we use biological vision as a test-bed and show that the soft thresholding operation associated to the use of the ℓ1 norm is highly suboptimal compared to other functions suited to approximating ℓp with 0 ≤ p < 1 (including recently proposed continuous exact relaxations), in terms of performance. We show that ℓ1 sparsity employs a pool with more neurons, i.e. has a higher degree of overcompleteness, in order to maintain the same reconstruction error as the other methods considered. More specifically, at the same sparsity level, the thresholding algorithm using the ℓ1 norm as a penalty requires a dictionary of ten times more units compared to the proposed approach, where a non-convex continuous relaxation of the ℓ0 pseudo-norm is used, to reconstruct the external stimulus equally well. At a fixed sparsity level, both ℓ0- and ℓ1-based regularization develop units with receptive field (RF) shapes similar to biological neurons in V1 (and a subset of neurons in V2), but ℓ0-based regularization shows approximately five times better reconstruction of the stimulus. Our results in conjunction with recent metabolic findings indicate that for V1 to operate efficiently it should follow a coding regime which uses a regularization that is closer to the ℓ0 pseudo-norm rather than the ℓ1 one, and suggests a similar mode of operation for the sensory cortex in general.</p>","PeriodicalId":49688,"journal":{"name":"PLoS Computational Biology","volume":"19 9","pages":"e1011459"},"PeriodicalIF":4.3000,"publicationDate":"2023-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10516432/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"PLoS Computational Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1371/journal.pcbi.1011459","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/9/1 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Growing evidence indicates that only a sparse subset from a pool of sensory neurons is active for the encoding of visual stimuli at any instant in time. Traditionally, to replicate such biological sparsity, generative models have been using the ℓ1 norm as a penalty due to its convexity, which makes it amenable to fast and simple algorithmic solvers. In this work, we use biological vision as a test-bed and show that the soft thresholding operation associated to the use of the ℓ1 norm is highly suboptimal compared to other functions suited to approximating ℓp with 0 ≤ p < 1 (including recently proposed continuous exact relaxations), in terms of performance. We show that ℓ1 sparsity employs a pool with more neurons, i.e. has a higher degree of overcompleteness, in order to maintain the same reconstruction error as the other methods considered. More specifically, at the same sparsity level, the thresholding algorithm using the ℓ1 norm as a penalty requires a dictionary of ten times more units compared to the proposed approach, where a non-convex continuous relaxation of the ℓ0 pseudo-norm is used, to reconstruct the external stimulus equally well. At a fixed sparsity level, both ℓ0- and ℓ1-based regularization develop units with receptive field (RF) shapes similar to biological neurons in V1 (and a subset of neurons in V2), but ℓ0-based regularization shows approximately five times better reconstruction of the stimulus. Our results in conjunction with recent metabolic findings indicate that for V1 to operate efficiently it should follow a coding regime which uses a regularization that is closer to the ℓ0 pseudo-norm rather than the ℓ1 one, and suggests a similar mode of operation for the sensory cortex in general.

Abstract Image

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
超过ℓ1中的稀疏编码。
越来越多的证据表明,在任何时刻,只有来自感觉神经元池的稀疏子集对视觉刺激的编码是活跃的。传统上,为了复制这种生物稀疏性,生成模型一直在使用ℓ1范数作为惩罚,因为它具有凸性,这使得它适用于快速简单的算法求解器。在这项工作中,我们使用生物视觉作为试验台,并表明与使用ℓ与适用于近似的其他函数相比,1范数是高度次优的ℓp≤p<1(包括最近提出的连续精确弛豫)。我们展示了ℓ1稀疏性采用了具有更多神经元的池,即具有更高程度的过完全性,以便保持与所考虑的其他方法相同的重建误差。更具体地,在相同的稀疏性水平下,使用ℓ1范数作为惩罚需要一个比所提出的方法多十倍的单位字典,其中ℓ0伪范数,可以同样好地重构外部刺激。在固定的稀疏性级别上ℓ0和ℓ基于1的正则化开发具有与V1中的生物神经元(以及V2中的神经元子集)相似的感受野(RF)形状的单元,但是ℓ基于0的正则化显示了对刺激的大约五倍的更好的重建。我们的研究结果以及最近的代谢发现表明,为了使V1有效运行,它应该遵循一种编码机制,该机制使用更接近ℓ0伪范数,而不是ℓ1之一,并提出了一般感觉皮层的类似操作模式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
PLoS Computational Biology
PLoS Computational Biology 生物-生化研究方法
CiteScore
7.10
自引率
4.70%
发文量
820
期刊介绍: PLOS Computational Biology features works of exceptional significance that further our understanding of living systems at all scales—from molecules and cells, to patient populations and ecosystems—through the application of computational methods. Readers include life and computational scientists, who can take the important findings presented here to the next level of discovery. Research articles must be declared as belonging to a relevant section. More information about the sections can be found in the submission guidelines. Research articles should model aspects of biological systems, demonstrate both methodological and scientific novelty, and provide profound new biological insights. Generally, reliability and significance of biological discovery through computation should be validated and enriched by experimental studies. Inclusion of experimental validation is not required for publication, but should be referenced where possible. Inclusion of experimental validation of a modest biological discovery through computation does not render a manuscript suitable for PLOS Computational Biology. Research articles specifically designated as Methods papers should describe outstanding methods of exceptional importance that have been shown, or have the promise to provide new biological insights. The method must already be widely adopted, or have the promise of wide adoption by a broad community of users. Enhancements to existing published methods will only be considered if those enhancements bring exceptional new capabilities.
期刊最新文献
Real-time forecasting of COVID-19-related hospital strain in France using a non-Markovian mechanistic model. Ten simple rules for teaching an introduction to R Evolutionary analyses of intrinsically disordered regions reveal widespread signals of conservation. A weak coupling mechanism for the early steps of the recovery stroke of myosin VI: A free energy simulation and string method analysis. Validity conditions of approximations for a target-mediated drug disposition model: A novel first-order approximation and its comparison to other approximations.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1