Practical Guideline for Prevention of Patchy Hair Loss following CyberKnife Stereotactic Radiosurgery for Calvarial or Scalp Tumors: Retrospective Analysis of a Single Institution Experience.
David J Park, Neelan J Marianayagam, Ulas Yener, Armine Tayag, Louisa Ustrzynski, Sara C Emrich, Erqi Pollom, Scott Soltys, Antonio Meola, Steven D Chang
{"title":"Practical Guideline for Prevention of Patchy Hair Loss following CyberKnife Stereotactic Radiosurgery for Calvarial or Scalp Tumors: Retrospective Analysis of a Single Institution Experience.","authors":"David J Park, Neelan J Marianayagam, Ulas Yener, Armine Tayag, Louisa Ustrzynski, Sara C Emrich, Erqi Pollom, Scott Soltys, Antonio Meola, Steven D Chang","doi":"10.1159/000533555","DOIUrl":null,"url":null,"abstract":"Introduction: Patchy alopecia is a common adverse effect of stereotactic radiosurgery (SRS) on the calvarium and/or scalp, yet no guidelines exist for its prevention. This study aims to investigate the incidence and outcomes of patchy alopecia following SRS for patients with calvarial or scalp lesions and establish preventive guidelines. Methods: The study included 20 patients who underwent CyberKnife SRS for calvarial or scalp lesions, resulting in a total of 30 treated lesions. SRS was administered as a single fraction for 8 lesions and hypofractionated for 22 lesions. The median SRS target volume was 9.85 cc (range: 0.81–110.7 cc), and the median prescription dose was 27 Gy (range: 16–40 Gy), delivered in 1–5 fractions (median: 3). The median follow-up was 15 months. Results: Among the 30 treated lesions, 11 led to patchy alopecia, while 19 did not. All cases of alopecia resolved within 12 months, and no patients experienced other adverse radiation effects. Lesions resulting in alopecia exhibited significantly higher biologically effective dose (BED) and single-fraction equivalent dose (SFED) on the overlying scalp compared to those without alopecia. Patients with BED and SFED exceeding 60 Gy and 20 Gy, respectively, were 9.3 times more likely to experience patchy alopecia than those with lower doses. The 1-year local tumor control rate for the treated lesions was 93.3%. Chemotherapy was administered for 26 lesions, with 11 lesions receiving radiosensitizing agents. However, no statistically significant difference was found. Conclusion: In summary, SRS is a safe and effective treatment for patients with calvarial/scalp masses regarding patchy alopecia near the treated area. Limiting the BED under 60 Gy and SFED under 20 Gy for the overlying scalp can help prevent patchy alopecia during SRS treatment of the calvarial/scalp mass. Clinicians can use this information to inform patients about the risk of alopecia and the contributing factors.","PeriodicalId":22078,"journal":{"name":"Stereotactic and Functional Neurosurgery","volume":" ","pages":"319-325"},"PeriodicalIF":1.9000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Stereotactic and Functional Neurosurgery","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1159/000533555","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/9/12 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"NEUROIMAGING","Score":null,"Total":0}
引用次数: 1
Abstract
Introduction: Patchy alopecia is a common adverse effect of stereotactic radiosurgery (SRS) on the calvarium and/or scalp, yet no guidelines exist for its prevention. This study aims to investigate the incidence and outcomes of patchy alopecia following SRS for patients with calvarial or scalp lesions and establish preventive guidelines. Methods: The study included 20 patients who underwent CyberKnife SRS for calvarial or scalp lesions, resulting in a total of 30 treated lesions. SRS was administered as a single fraction for 8 lesions and hypofractionated for 22 lesions. The median SRS target volume was 9.85 cc (range: 0.81–110.7 cc), and the median prescription dose was 27 Gy (range: 16–40 Gy), delivered in 1–5 fractions (median: 3). The median follow-up was 15 months. Results: Among the 30 treated lesions, 11 led to patchy alopecia, while 19 did not. All cases of alopecia resolved within 12 months, and no patients experienced other adverse radiation effects. Lesions resulting in alopecia exhibited significantly higher biologically effective dose (BED) and single-fraction equivalent dose (SFED) on the overlying scalp compared to those without alopecia. Patients with BED and SFED exceeding 60 Gy and 20 Gy, respectively, were 9.3 times more likely to experience patchy alopecia than those with lower doses. The 1-year local tumor control rate for the treated lesions was 93.3%. Chemotherapy was administered for 26 lesions, with 11 lesions receiving radiosensitizing agents. However, no statistically significant difference was found. Conclusion: In summary, SRS is a safe and effective treatment for patients with calvarial/scalp masses regarding patchy alopecia near the treated area. Limiting the BED under 60 Gy and SFED under 20 Gy for the overlying scalp can help prevent patchy alopecia during SRS treatment of the calvarial/scalp mass. Clinicians can use this information to inform patients about the risk of alopecia and the contributing factors.
期刊介绍:
''Stereotactic and Functional Neurosurgery'' provides a single source for the reader to keep abreast of developments in the most rapidly advancing subspecialty within neurosurgery. Technological advances in computer-assisted surgery, robotics, imaging and neurophysiology are being applied to clinical problems with ever-increasing rapidity in stereotaxis more than any other field, providing opportunities for new approaches to surgical and radiotherapeutic management of diseases of the brain, spinal cord, and spine. Issues feature advances in the use of deep-brain stimulation, imaging-guided techniques in stereotactic biopsy and craniotomy, stereotactic radiosurgery, and stereotactically implanted and guided radiotherapeutics and biologicals in the treatment of functional and movement disorders, brain tumors, and other diseases of the brain. Background information from basic science laboratories related to such clinical advances provides the reader with an overall perspective of this field. Proceedings and abstracts from many of the key international meetings furnish an overview of this specialty available nowhere else. ''Stereotactic and Functional Neurosurgery'' meets the information needs of both investigators and clinicians in this rapidly advancing field.