{"title":"Direct estimation of volume under the ROC surface with verification bias.","authors":"Shuangfei Shi, Gengsheng Qin","doi":"10.1080/10543406.2023.2236202","DOIUrl":null,"url":null,"abstract":"<p><p>In practice, the receiver operating characteristic (ROC) curve of a diagnostic test is widely used to show the performance of the test for discriminating two-class events. The area under the ROC curve (AUC) is proposed as an index for the assessment of the diagnostic accuracy of the test under consideration. Due to ethical and cost considerations associated with application of gold standard (GS) tests, only a subset of the patients initially tested have verified disease status. Statistical evaluation of the test performance based only on test results from subjects with verified disease status are typically biased. Various AUC estimation methods for tests with verification biased data have been developed over the last few decades. In this article, we develop new direct estimation methods for the volume under the ROC surface (VUS) by extending the AUC estimation methods for two-class diagnostic tests to three-class diagnostic tests in the presence of verification bias. The proposed methods will provide a comprehensive guide to deal with the verification bias in three-class diagnostic test accuracy studies and lead to a better choice of diagnostic tests.</p>","PeriodicalId":54870,"journal":{"name":"Journal of Biopharmaceutical Statistics","volume":" ","pages":"553-581"},"PeriodicalIF":1.2000,"publicationDate":"2024-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biopharmaceutical Statistics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/10543406.2023.2236202","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/7/20 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0
Abstract
In practice, the receiver operating characteristic (ROC) curve of a diagnostic test is widely used to show the performance of the test for discriminating two-class events. The area under the ROC curve (AUC) is proposed as an index for the assessment of the diagnostic accuracy of the test under consideration. Due to ethical and cost considerations associated with application of gold standard (GS) tests, only a subset of the patients initially tested have verified disease status. Statistical evaluation of the test performance based only on test results from subjects with verified disease status are typically biased. Various AUC estimation methods for tests with verification biased data have been developed over the last few decades. In this article, we develop new direct estimation methods for the volume under the ROC surface (VUS) by extending the AUC estimation methods for two-class diagnostic tests to three-class diagnostic tests in the presence of verification bias. The proposed methods will provide a comprehensive guide to deal with the verification bias in three-class diagnostic test accuracy studies and lead to a better choice of diagnostic tests.
期刊介绍:
The Journal of Biopharmaceutical Statistics, a rapid publication journal, discusses quality applications of statistics in biopharmaceutical research and development. Now publishing six times per year, it includes expositions of statistical methodology with immediate applicability to biopharmaceutical research in the form of full-length and short manuscripts, review articles, selected/invited conference papers, short articles, and letters to the editor. Addressing timely and provocative topics important to the biostatistical profession, the journal covers:
Drug, device, and biological research and development;
Drug screening and drug design;
Assessment of pharmacological activity;
Pharmaceutical formulation and scale-up;
Preclinical safety assessment;
Bioavailability, bioequivalence, and pharmacokinetics;
Phase, I, II, and III clinical development including complex innovative designs;
Premarket approval assessment of clinical safety;
Postmarketing surveillance;
Big data and artificial intelligence and applications.