{"title":"Suppression of cAMP/PKA/CREB signaling ameliorates retinal injury in diabetic retinopathy.","authors":"Xiao-Ling Fang, Qin Zhang, Wen-Wen Xue, Jin-Hua Tao, Hai-Dong Zou, Qiu-Rong Lin, Yu-Lan Wang","doi":"10.1002/kjm2.12722","DOIUrl":null,"url":null,"abstract":"<p><p>The blood-retinal barrier (BRB), homeostasis, neuronal integrity, and metabolic processes are all directly influenced by Müller cells, the most important retinal glial cells. We isolated primary Müller cells from Sprague-Dawley (SD) neonatal rats and treated them with glucose at varying doses. CCK-8 was used to quantify cellular viability, and a TUNEL assay was performed to detect cell apoptosis. ELISA, immunofluorescence, and western blotting were used to assess cAMP/PKA/CREB signaling, Kir4.1, AQP4, GFAP, and VEGF levels, respectively. H&E staining was used to examine histopathological alterations in diabetic retinopathy (DR)-affected retinal tissue in rats. As glucose concentration increases, gliosis of Müller cells became apparent, as evidenced by a decline in cell activity, an increase in apoptosis, downregulation of Kir4.1 level, and overexpression of GFAP, AQP4, and VEGF. Treatments with low, intermediate, and high glucose levels led to aberrant activation of cAMP/PKA/CREB signaling. Interestingly, blocking cAMP and PKA reduced high glucose-induced Müller cell damage and gliosis by a significant amount. Further in vivo results suggested that cAMP or PKA inhibition significantly improved edema, bleeding, and retinal disorders. Our findings showed that high glucose exacerbated Müller cell damage and gliosis via a mechanism involving cAMP/PKA/CREB signaling.</p>","PeriodicalId":49946,"journal":{"name":"Kaohsiung Journal of Medical Sciences","volume":"39 9","pages":"916-926"},"PeriodicalIF":2.7000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Kaohsiung Journal of Medical Sciences","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1002/kjm2.12722","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 2
Abstract
The blood-retinal barrier (BRB), homeostasis, neuronal integrity, and metabolic processes are all directly influenced by Müller cells, the most important retinal glial cells. We isolated primary Müller cells from Sprague-Dawley (SD) neonatal rats and treated them with glucose at varying doses. CCK-8 was used to quantify cellular viability, and a TUNEL assay was performed to detect cell apoptosis. ELISA, immunofluorescence, and western blotting were used to assess cAMP/PKA/CREB signaling, Kir4.1, AQP4, GFAP, and VEGF levels, respectively. H&E staining was used to examine histopathological alterations in diabetic retinopathy (DR)-affected retinal tissue in rats. As glucose concentration increases, gliosis of Müller cells became apparent, as evidenced by a decline in cell activity, an increase in apoptosis, downregulation of Kir4.1 level, and overexpression of GFAP, AQP4, and VEGF. Treatments with low, intermediate, and high glucose levels led to aberrant activation of cAMP/PKA/CREB signaling. Interestingly, blocking cAMP and PKA reduced high glucose-induced Müller cell damage and gliosis by a significant amount. Further in vivo results suggested that cAMP or PKA inhibition significantly improved edema, bleeding, and retinal disorders. Our findings showed that high glucose exacerbated Müller cell damage and gliosis via a mechanism involving cAMP/PKA/CREB signaling.
期刊介绍:
Kaohsiung Journal of Medical Sciences (KJMS), is the official peer-reviewed open access publication of Kaohsiung Medical University, Taiwan. The journal was launched in 1985 to promote clinical and scientific research in the medical sciences in Taiwan, and to disseminate this research to the international community. It is published monthly by Wiley. KJMS aims to publish original research and review papers in all fields of medicine and related disciplines that are of topical interest to the medical profession. Authors are welcome to submit Perspectives, reviews, original articles, short communications, Correspondence and letters to the editor for consideration.