Sojeong Lee, Nayeon Kim, Daegyu Jang, Hee Kyung Kim, Jongin Kim, Ji Won Jeon, Do-Hwan Lim
{"title":"Ecdysone-induced microRNA miR-276a-3p controls developmental growth by targeting the insulin-like receptor in Drosophila","authors":"Sojeong Lee, Nayeon Kim, Daegyu Jang, Hee Kyung Kim, Jongin Kim, Ji Won Jeon, Do-Hwan Lim","doi":"10.1111/imb.12872","DOIUrl":null,"url":null,"abstract":"<p>Animal growth is controlled by a variety of external and internal factors during development. The steroid hormone ecdysone plays a critical role in insect development by regulating the expression of various genes. In this study, we found that fat body-specific expression of <i>miR-276a</i>, an ecdysone-responsive microRNA (miRNA), led to a decrease in the total mass of the larval fat body, resulting in significant growth reduction in <i>Drosophila</i>. Changes in <i>miR-276a</i> expression also affected the proliferation of <i>Drosophila</i> S2 cells. Furthermore, we found that the insulin-like receptor (<i>InR</i>) is a biologically relevant target gene regulated by <i>miR-276a-3p</i>. In addition, we found that <i>miR-276a-3p</i> is upregulated by the canonical ecdysone signalling pathway involving the ecdysone receptor and broad complex. A reduction in cell proliferation caused by ecdysone was compromised by blocking miR-276a-3p activity. Thus, our results suggest that miR-276a-3p is involved in ecdysone-mediated growth reduction by controlling InR expression in the insulin signalling pathway.</p>","PeriodicalId":13526,"journal":{"name":"Insect Molecular Biology","volume":"32 6","pages":"703-715"},"PeriodicalIF":2.3000,"publicationDate":"2023-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Insect Molecular Biology","FirstCategoryId":"97","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/imb.12872","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Animal growth is controlled by a variety of external and internal factors during development. The steroid hormone ecdysone plays a critical role in insect development by regulating the expression of various genes. In this study, we found that fat body-specific expression of miR-276a, an ecdysone-responsive microRNA (miRNA), led to a decrease in the total mass of the larval fat body, resulting in significant growth reduction in Drosophila. Changes in miR-276a expression also affected the proliferation of Drosophila S2 cells. Furthermore, we found that the insulin-like receptor (InR) is a biologically relevant target gene regulated by miR-276a-3p. In addition, we found that miR-276a-3p is upregulated by the canonical ecdysone signalling pathway involving the ecdysone receptor and broad complex. A reduction in cell proliferation caused by ecdysone was compromised by blocking miR-276a-3p activity. Thus, our results suggest that miR-276a-3p is involved in ecdysone-mediated growth reduction by controlling InR expression in the insulin signalling pathway.
期刊介绍:
Insect Molecular Biology has been dedicated to providing researchers with the opportunity to publish high quality original research on topics broadly related to insect molecular biology since 1992. IMB is particularly interested in publishing research in insect genomics/genes and proteomics/proteins.
This includes research related to:
• insect gene structure
• control of gene expression
• localisation and function/activity of proteins
• interactions of proteins and ligands/substrates
• effect of mutations on gene/protein function
• evolution of insect genes/genomes, especially where principles relevant to insects in general are established
• molecular population genetics where data are used to identify genes (or regions of genomes) involved in specific adaptations
• gene mapping using molecular tools
• molecular interactions of insects with microorganisms including Wolbachia, symbionts and viruses or other pathogens transmitted by insects
Papers can include large data sets e.g.from micro-array or proteomic experiments or analyses of genome sequences done in silico (subject to the data being placed in the context of hypothesis testing).