The repetitive structure of DNA clamps: An overlooked protein tandem repeat

IF 3 3区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY Journal of structural biology Pub Date : 2023-09-01 DOI:10.1016/j.jsb.2023.108001
Paula Nazarena Arrías , Alexander Miguel Monzon , Damiano Clementel , Soroush Mozaffari , Damiano Piovesan , Andrey V. Kajava , Silvio C.E. Tosatto
{"title":"The repetitive structure of DNA clamps: An overlooked protein tandem repeat","authors":"Paula Nazarena Arrías ,&nbsp;Alexander Miguel Monzon ,&nbsp;Damiano Clementel ,&nbsp;Soroush Mozaffari ,&nbsp;Damiano Piovesan ,&nbsp;Andrey V. Kajava ,&nbsp;Silvio C.E. Tosatto","doi":"10.1016/j.jsb.2023.108001","DOIUrl":null,"url":null,"abstract":"<div><p>Structured tandem repeats proteins (STRPs) are a specific kind of tandem repeat proteins characterized by a modular and repetitive three-dimensional structure arrangement. The majority of STRPs adopt solenoid structures, but with the increasing availability of experimental structures and high-quality predicted structural models, more STRP folds can be characterized. Here, we describe “Box repeats”, an overlooked STRP fold present in the DNA sliding clamp processivity factors, which has eluded classification although structural data has been available since the late 1990s. Each Box repeat is a β⍺βββ module of about 60 residues, which forms a class V “beads-on-a-string” type STRP. The number of repeats present in processivity factors is organism dependent. Monomers of PCNA proteins in both Archaea and Eukarya have 4 repeats, while the monomers of bacterial beta-sliding clamps have 6 repeats. This new repeat fold has been added to the RepeatsDB database, which now provides structural annotation for 66 Box repeat proteins belonging to different organisms, including viruses.</p></div>","PeriodicalId":17074,"journal":{"name":"Journal of structural biology","volume":null,"pages":null},"PeriodicalIF":3.0000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of structural biology","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1047847723000643","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 1

Abstract

Structured tandem repeats proteins (STRPs) are a specific kind of tandem repeat proteins characterized by a modular and repetitive three-dimensional structure arrangement. The majority of STRPs adopt solenoid structures, but with the increasing availability of experimental structures and high-quality predicted structural models, more STRP folds can be characterized. Here, we describe “Box repeats”, an overlooked STRP fold present in the DNA sliding clamp processivity factors, which has eluded classification although structural data has been available since the late 1990s. Each Box repeat is a β⍺βββ module of about 60 residues, which forms a class V “beads-on-a-string” type STRP. The number of repeats present in processivity factors is organism dependent. Monomers of PCNA proteins in both Archaea and Eukarya have 4 repeats, while the monomers of bacterial beta-sliding clamps have 6 repeats. This new repeat fold has been added to the RepeatsDB database, which now provides structural annotation for 66 Box repeat proteins belonging to different organisms, including viruses.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
DNA夹的重复结构:一个被忽视的蛋白质串联重复
结构串联重复蛋白(STRPs)是一种特殊的串联重复蛋白,其特征是具有模块化和重复性的三维结构排列。大多数STRP采用螺线管结构,但随着实验结构和高质量预测结构模型的可用性的增加,可以表征更多的STRP褶皱。在这里,我们描述了“盒重复序列”,这是一种存在于DNA滑动钳加工因子中的被忽视的STRP折叠,尽管自20世纪90年代末以来已有结构数据,但它一直无法分类。每个Box重复序列是一个约60个残基的β⍺βββ模块,形成V类“珠上串”型STRP。过程性因子中存在的重复次数取决于生物体。古菌和真核菌中PCNA蛋白的单体都有4个重复,而细菌β滑动钳的单体有6个重复。这种新的重复折叠已被添加到RepeatsDB数据库中,该数据库现在为属于不同生物体(包括病毒)的66个Box重复蛋白提供结构注释。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of structural biology
Journal of structural biology 生物-生化与分子生物学
CiteScore
6.30
自引率
3.30%
发文量
88
审稿时长
65 days
期刊介绍: Journal of Structural Biology (JSB) has an open access mirror journal, the Journal of Structural Biology: X (JSBX), sharing the same aims and scope, editorial team, submission system and rigorous peer review. Since both journals share the same editorial system, you may submit your manuscript via either journal homepage. You will be prompted during submission (and revision) to choose in which to publish your article. The editors and reviewers are not aware of the choice you made until the article has been published online. JSB and JSBX publish papers dealing with the structural analysis of living material at every level of organization by all methods that lead to an understanding of biological function in terms of molecular and supermolecular structure. Techniques covered include: • Light microscopy including confocal microscopy • All types of electron microscopy • X-ray diffraction • Nuclear magnetic resonance • Scanning force microscopy, scanning probe microscopy, and tunneling microscopy • Digital image processing • Computational insights into structure
期刊最新文献
Selective signal enhancement in Fourier space as a tool for discovering ultrastructural organization of macromolecules from in situ TEM. Comparison of the global crystallographic texture of minerals in the shells of Bathymodiolus thermophilus Kenk et B.R. Wilson, 1985 and species of the genus Mytilus Linnaeus, 1758 Three-dimensional cellular architecture of the sigmoid filament in Trichomonas vaginalis Outside Front Cover Editorial Board
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1