{"title":"Why does the first protein repeat often become the only one?","authors":"Simona Manasra , Andrey V. Kajava","doi":"10.1016/j.jsb.2023.108014","DOIUrl":null,"url":null,"abstract":"<div><p>Proteins with two similar motifs in tandem are one of the most common cases of tandem repeat proteins. The question arises: why is the first emerged repeat frequently fixed in the process of evolution, despite the ample opportunities to continue its multiplication at the DNA level? To answer this question, we systematically analyzed the structure and function of these proteins. Our analysis showed that, in the vast majority of cases, the structural repetitive units have a two-fold (C2) internal symmetry. These closed structures provide an internal structural limitation for the subsequent growth of the repeat number. Frequently, the units “swap” their secondary structure elements with each other. Moreover, the duplicated domains, in contrast to other tandem repeat proteins, form binding sites for small molecules around the axis of C2 symmetry. Thus, the closure of the C2 structures and the emergence of new functional sites around the axis of C2 symmetry provide plausible explanations for why a repeat, once appeared, becomes fixed in the evolutionary process. We have placed these structures within the general structural classification of tandem repeat proteins, classifying them as either Class IV or V depending on the size of the repetitive unit.</p></div>","PeriodicalId":17074,"journal":{"name":"Journal of structural biology","volume":null,"pages":null},"PeriodicalIF":3.0000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of structural biology","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1047847723000771","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Proteins with two similar motifs in tandem are one of the most common cases of tandem repeat proteins. The question arises: why is the first emerged repeat frequently fixed in the process of evolution, despite the ample opportunities to continue its multiplication at the DNA level? To answer this question, we systematically analyzed the structure and function of these proteins. Our analysis showed that, in the vast majority of cases, the structural repetitive units have a two-fold (C2) internal symmetry. These closed structures provide an internal structural limitation for the subsequent growth of the repeat number. Frequently, the units “swap” their secondary structure elements with each other. Moreover, the duplicated domains, in contrast to other tandem repeat proteins, form binding sites for small molecules around the axis of C2 symmetry. Thus, the closure of the C2 structures and the emergence of new functional sites around the axis of C2 symmetry provide plausible explanations for why a repeat, once appeared, becomes fixed in the evolutionary process. We have placed these structures within the general structural classification of tandem repeat proteins, classifying them as either Class IV or V depending on the size of the repetitive unit.
期刊介绍:
Journal of Structural Biology (JSB) has an open access mirror journal, the Journal of Structural Biology: X (JSBX), sharing the same aims and scope, editorial team, submission system and rigorous peer review. Since both journals share the same editorial system, you may submit your manuscript via either journal homepage. You will be prompted during submission (and revision) to choose in which to publish your article. The editors and reviewers are not aware of the choice you made until the article has been published online. JSB and JSBX publish papers dealing with the structural analysis of living material at every level of organization by all methods that lead to an understanding of biological function in terms of molecular and supermolecular structure.
Techniques covered include:
• Light microscopy including confocal microscopy
• All types of electron microscopy
• X-ray diffraction
• Nuclear magnetic resonance
• Scanning force microscopy, scanning probe microscopy, and tunneling microscopy
• Digital image processing
• Computational insights into structure