Fazlullah Khan;Ryan Alturki;Md Arafatur Rahman;Spyridon Mastorakis;Imran Razzak;Syed Tauhidullah Shah
{"title":"Trustworthy and Reliable Deep-Learning-Based Cyberattack Detection in Industrial IoT","authors":"Fazlullah Khan;Ryan Alturki;Md Arafatur Rahman;Spyridon Mastorakis;Imran Razzak;Syed Tauhidullah Shah","doi":"10.1109/TII.2022.3190352","DOIUrl":null,"url":null,"abstract":"A fundamental expectation of the stakeholders from the Industrial Internet of Things (IIoT) is its trustworthiness and sustainability to avoid the loss of human lives in performing a critical task. A trustworthy IIoT-enabled network encompasses fundamental security characteristics, such as trust, privacy, security, reliability, resilience, and safety. The traditional security mechanisms and procedures are insufficient to protect these networks owing to protocol differences, limited update options, and older adaptations of the security mechanisms. As a result, these networks require novel approaches to increase trust-level and enhance security and privacy mechanisms. Therefore, in this article, we propose a novel approach to improve the trustworthiness of IIoT-enabled networks. We propose an accurate and reliable supervisory control and data acquisition (SCADA) network-based cyberattack detection in these networks. The proposed scheme combines the deep-learning-based pyramidal recurrent units (PRU) and decision tree (DT) with SCADA-based IIoT networks. We also use an ensemble-learning method to detect cyberattacks in SCADA-based IIoT networks. The nonlinear learning ability of PRU and the ensemble DT address the sensitivity of irrelevant features, allowing high detection rates. The proposed scheme is evaluated on 15 datasets generated from SCADA-based networks. The experimental results show that the proposed scheme outperforms traditional methods and machine learning-based detection approaches. The proposed scheme improves the security and associated measure of trustworthiness in IIoT-enabled networks.","PeriodicalId":13301,"journal":{"name":"IEEE Transactions on Industrial Informatics","volume":"19 1","pages":"1030-1038"},"PeriodicalIF":11.7000,"publicationDate":"2022-07-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9829330","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Industrial Informatics","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/9829330/","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 7
Abstract
A fundamental expectation of the stakeholders from the Industrial Internet of Things (IIoT) is its trustworthiness and sustainability to avoid the loss of human lives in performing a critical task. A trustworthy IIoT-enabled network encompasses fundamental security characteristics, such as trust, privacy, security, reliability, resilience, and safety. The traditional security mechanisms and procedures are insufficient to protect these networks owing to protocol differences, limited update options, and older adaptations of the security mechanisms. As a result, these networks require novel approaches to increase trust-level and enhance security and privacy mechanisms. Therefore, in this article, we propose a novel approach to improve the trustworthiness of IIoT-enabled networks. We propose an accurate and reliable supervisory control and data acquisition (SCADA) network-based cyberattack detection in these networks. The proposed scheme combines the deep-learning-based pyramidal recurrent units (PRU) and decision tree (DT) with SCADA-based IIoT networks. We also use an ensemble-learning method to detect cyberattacks in SCADA-based IIoT networks. The nonlinear learning ability of PRU and the ensemble DT address the sensitivity of irrelevant features, allowing high detection rates. The proposed scheme is evaluated on 15 datasets generated from SCADA-based networks. The experimental results show that the proposed scheme outperforms traditional methods and machine learning-based detection approaches. The proposed scheme improves the security and associated measure of trustworthiness in IIoT-enabled networks.
期刊介绍:
The IEEE Transactions on Industrial Informatics is a multidisciplinary journal dedicated to publishing technical papers that connect theory with practical applications of informatics in industrial settings. It focuses on the utilization of information in intelligent, distributed, and agile industrial automation and control systems. The scope includes topics such as knowledge-based and AI-enhanced automation, intelligent computer control systems, flexible and collaborative manufacturing, industrial informatics in software-defined vehicles and robotics, computer vision, industrial cyber-physical and industrial IoT systems, real-time and networked embedded systems, security in industrial processes, industrial communications, systems interoperability, and human-machine interaction.