{"title":"Comparison between MRI and the Combination of 2D and 3D US in the Prenatal Diagnosis of Closed Spina Bifida.","authors":"Weiping Zhang, Jingling Wang, Hui Wu, Li Chen","doi":"10.1159/000533205","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>Closed spina bifida (CSB) is a rare condition with a challenging prenatal diagnosis. Herein, we assess the conventional two-dimensional (2D) ultrasound (US) combined with three-dimensional (3D) ultrasound (US) and magnetic resonance imaging (MRI) in the prenatal diagnosis of CSB.</p><p><strong>Methods: </strong>In this retrospective study, we included 20 cases of fetal CSB confirmed by postnatal MRI, post-mortem pathological examination, or postpartum surgery. Prenatal 2D US complemented with the 3D US was performed in all fetuses to evaluate the characteristics of the conus, vertebral arch, and scoliosis. Moreover, MRI was performed to establish the split vertebrae, with or without a bulging mass. Thereafter, we compared the performance of the US and MRI.</p><p><strong>Results: </strong>Diagnosis accuracy of US was comparable with MRI (70% vs. 75%, κ = 0.62); US detected more cases with interpediculate distance ≥95% (55% vs. 35%, κ = 0.22) than MRI. On the other hand, MRI had a superior capacity for identifying vertebral arch fissures (20% vs. 35%, κ = 0.39). MRI and ultrasound had good agreement in the conus medullaris (65% vs. 70%, κ = 0.42) and scoliosis (45% vs. 35%, κ = 0.59). Both US and MRI detected 1 (5.0%) case with \"lemon sign\" and \"banana sign.\" The missed diagnosis rates of US and MRI were 15% (3/20) and 5% (1/20), respectively. The misdiagnosis rates of US and MRI were 15.0% (3/20) and 20.0% (4/20), respectively.</p><p><strong>Conclusion: </strong>Both MRI and 2D US combined with the 3D US had excellent performance in prenatal diagnosis of CSB.</p>","PeriodicalId":54631,"journal":{"name":"Pediatric Neurosurgery","volume":" ","pages":"392-400"},"PeriodicalIF":0.9000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pediatric Neurosurgery","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1159/000533205","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/9/12 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"CLINICAL NEUROLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Introduction: Closed spina bifida (CSB) is a rare condition with a challenging prenatal diagnosis. Herein, we assess the conventional two-dimensional (2D) ultrasound (US) combined with three-dimensional (3D) ultrasound (US) and magnetic resonance imaging (MRI) in the prenatal diagnosis of CSB.
Methods: In this retrospective study, we included 20 cases of fetal CSB confirmed by postnatal MRI, post-mortem pathological examination, or postpartum surgery. Prenatal 2D US complemented with the 3D US was performed in all fetuses to evaluate the characteristics of the conus, vertebral arch, and scoliosis. Moreover, MRI was performed to establish the split vertebrae, with or without a bulging mass. Thereafter, we compared the performance of the US and MRI.
Results: Diagnosis accuracy of US was comparable with MRI (70% vs. 75%, κ = 0.62); US detected more cases with interpediculate distance ≥95% (55% vs. 35%, κ = 0.22) than MRI. On the other hand, MRI had a superior capacity for identifying vertebral arch fissures (20% vs. 35%, κ = 0.39). MRI and ultrasound had good agreement in the conus medullaris (65% vs. 70%, κ = 0.42) and scoliosis (45% vs. 35%, κ = 0.59). Both US and MRI detected 1 (5.0%) case with "lemon sign" and "banana sign." The missed diagnosis rates of US and MRI were 15% (3/20) and 5% (1/20), respectively. The misdiagnosis rates of US and MRI were 15.0% (3/20) and 20.0% (4/20), respectively.
Conclusion: Both MRI and 2D US combined with the 3D US had excellent performance in prenatal diagnosis of CSB.
期刊介绍:
Articles in ''Pediatric Neurosurgery'' strives to publish new information and observations in pediatric neurosurgery and the allied fields of neurology, neuroradiology and neuropathology as they relate to the etiology of neurologic diseases and the operative care of affected patients. In addition to experimental and clinical studies, the journal presents critical reviews which provide the reader with an update on selected topics as well as case histories and reports on advances in methodology and technique. This thought-provoking focus encourages dissemination of information from neurosurgeons and neuroscientists around the world that will be of interest to clinicians and researchers concerned with pediatric, congenital, and developmental diseases of the nervous system.