Divisive normalization processors in the early visual system of the Drosophila brain.

IF 1.7 4区 工程技术 Q3 COMPUTER SCIENCE, CYBERNETICS Biological Cybernetics Pub Date : 2023-12-01 Epub Date: 2023-09-13 DOI:10.1007/s00422-023-00972-x
Aurel A Lazar, Yiyin Zhou
{"title":"Divisive normalization processors in the early visual system of the Drosophila brain.","authors":"Aurel A Lazar, Yiyin Zhou","doi":"10.1007/s00422-023-00972-x","DOIUrl":null,"url":null,"abstract":"<p><p>Divisive normalization is a model of canonical computation of brain circuits. We demonstrate that two cascaded divisive normalization processors (DNPs), carrying out intensity/contrast gain control and elementary motion detection, respectively, can model the robust motion detection realized by the early visual system of the fruit fly. We first introduce a model of elementary motion detection and rewrite its underlying phase-based motion detection algorithm as a feedforward divisive normalization processor. We then cascade the DNP modeling the photoreceptor/amacrine cell layer with the motion detection DNP. We extensively evaluate the DNP for motion detection in dynamic environments where light intensity varies by orders of magnitude. The results are compared to other bio-inspired motion detectors as well as state-of-the-art optic flow algorithms under natural conditions. Our results demonstrate the potential of DNPs as canonical building blocks modeling the analog processing of early visual systems. The model highlights analog processing for accurately detecting visual motion, in both vertebrates and invertebrates. The results presented here shed new light on employing DNP-based algorithms in computer vision.</p>","PeriodicalId":55374,"journal":{"name":"Biological Cybernetics","volume":null,"pages":null},"PeriodicalIF":1.7000,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10752861/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biological Cybernetics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s00422-023-00972-x","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/9/13 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"COMPUTER SCIENCE, CYBERNETICS","Score":null,"Total":0}
引用次数: 0

Abstract

Divisive normalization is a model of canonical computation of brain circuits. We demonstrate that two cascaded divisive normalization processors (DNPs), carrying out intensity/contrast gain control and elementary motion detection, respectively, can model the robust motion detection realized by the early visual system of the fruit fly. We first introduce a model of elementary motion detection and rewrite its underlying phase-based motion detection algorithm as a feedforward divisive normalization processor. We then cascade the DNP modeling the photoreceptor/amacrine cell layer with the motion detection DNP. We extensively evaluate the DNP for motion detection in dynamic environments where light intensity varies by orders of magnitude. The results are compared to other bio-inspired motion detectors as well as state-of-the-art optic flow algorithms under natural conditions. Our results demonstrate the potential of DNPs as canonical building blocks modeling the analog processing of early visual systems. The model highlights analog processing for accurately detecting visual motion, in both vertebrates and invertebrates. The results presented here shed new light on employing DNP-based algorithms in computer vision.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
果蝇大脑早期视觉系统中的分裂正常化处理器
分割归一化是大脑电路的典型计算模型。我们证明,分别执行强度/对比度增益控制和基本运动检测的两个级联除法归一化处理器(DNP)可以模拟果蝇早期视觉系统实现的稳健运动检测。我们首先介绍了基本运动检测模型,并将其底层基于相位的运动检测算法改写为前馈分裂归一化处理器。然后,我们将光感受器/视网膜细胞层的 DNP 模型与运动检测 DNP 进行级联。我们广泛评估了 DNP 在光照强度呈数量级变化的动态环境中的运动检测能力。评估结果与其他生物启发运动检测器以及自然条件下最先进的光流算法进行了比较。我们的研究结果证明了 DNP 作为早期视觉系统模拟处理建模的典型构件的潜力。该模型突出了在脊椎动物和无脊椎动物中准确检测视觉运动的模拟处理过程。本文介绍的结果为在计算机视觉中采用基于 DNP 的算法提供了新的思路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Biological Cybernetics
Biological Cybernetics 工程技术-计算机:控制论
CiteScore
3.50
自引率
5.30%
发文量
38
审稿时长
6-12 weeks
期刊介绍: Biological Cybernetics is an interdisciplinary medium for theoretical and application-oriented aspects of information processing in organisms, including sensory, motor, cognitive, and ecological phenomena. Topics covered include: mathematical modeling of biological systems; computational, theoretical or engineering studies with relevance for understanding biological information processing; and artificial implementation of biological information processing and self-organizing principles. Under the main aspects of performance and function of systems, emphasis is laid on communication between life sciences and technical/theoretical disciplines.
期刊最新文献
Phase response curves and the role of coordinates. Neuroscientific insights about computer vision models: a concise review. Astrocyte-mediated neuronal irregularities and dynamics: the complexity of the tripartite synapse Can a Hebbian-like learning rule be avoiding the curse of dimensionality in sparse distributed data? Variational analysis of sensory feedback mechanisms in powerstroke-recovery systems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1