Anna Nadtochiy, Peter Luu, Scott E Fraser, Thai V Truong
{"title":"VoDEx: a Python library for time annotation and management of volumetric functional imaging data.","authors":"Anna Nadtochiy, Peter Luu, Scott E Fraser, Thai V Truong","doi":"10.1093/bioinformatics/btad568","DOIUrl":null,"url":null,"abstract":"<p><strong>Summary: </strong>In functional imaging studies, accurately synchronizing the time course of experimental manipulations and stimulus presentations with resulting imaging data is crucial for analysis. Current software tools lack such functionality, requiring manual processing of the experimental and imaging data, which is error-prone and potentially non-reproducible. We present VoDEx, an open-source Python library that streamlines the data management and analysis of functional imaging data. VoDEx synchronizes the experimental timeline and events (e.g. presented stimuli, recorded behavior) with imaging data. VoDEx provides tools for logging and storing the timeline annotation, and enables retrieval of imaging data based on specific time-based and manipulation-based experimental conditions.</p><p><strong>Availability and implementation: </strong>VoDEx is an open-source Python library and can be installed via the \"pip install\" command. It is released under a BSD license, and its source code is publicly accessible on GitHub (https://github.com/LemonJust/vodex). A graphical interface is available as a napari-vodex plugin, which can be installed through the napari plugins menu or using \"pip install.\" The source code for the napari plugin is available on GitHub (https://github.com/LemonJust/napari-vodex). The software version at the time of submission is archived at Zenodo (version v1.0.18, https://zenodo.org/record/8061531).</p>","PeriodicalId":8903,"journal":{"name":"Bioinformatics","volume":" ","pages":""},"PeriodicalIF":4.4000,"publicationDate":"2023-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10562951/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioinformatics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/bioinformatics/btad568","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Summary: In functional imaging studies, accurately synchronizing the time course of experimental manipulations and stimulus presentations with resulting imaging data is crucial for analysis. Current software tools lack such functionality, requiring manual processing of the experimental and imaging data, which is error-prone and potentially non-reproducible. We present VoDEx, an open-source Python library that streamlines the data management and analysis of functional imaging data. VoDEx synchronizes the experimental timeline and events (e.g. presented stimuli, recorded behavior) with imaging data. VoDEx provides tools for logging and storing the timeline annotation, and enables retrieval of imaging data based on specific time-based and manipulation-based experimental conditions.
Availability and implementation: VoDEx is an open-source Python library and can be installed via the "pip install" command. It is released under a BSD license, and its source code is publicly accessible on GitHub (https://github.com/LemonJust/vodex). A graphical interface is available as a napari-vodex plugin, which can be installed through the napari plugins menu or using "pip install." The source code for the napari plugin is available on GitHub (https://github.com/LemonJust/napari-vodex). The software version at the time of submission is archived at Zenodo (version v1.0.18, https://zenodo.org/record/8061531).
期刊介绍:
The leading journal in its field, Bioinformatics publishes the highest quality scientific papers and review articles of interest to academic and industrial researchers. Its main focus is on new developments in genome bioinformatics and computational biology. Two distinct sections within the journal - Discovery Notes and Application Notes- focus on shorter papers; the former reporting biologically interesting discoveries using computational methods, the latter exploring the applications used for experiments.