Endothelial structure contributes to heterogeneity in brain capillary diameter.

Vascular biology (Bristol, England) Pub Date : 2023-09-06 Print Date: 2023-01-01 DOI:10.1530/VB-23-0010
Sheridan M Sargent, Stephanie K Bonney, Yuandong Li, Stefan Stamenkovic, Marc M Takeno, Vanessa Coelho-Santos, Andy Y Shih
{"title":"Endothelial structure contributes to heterogeneity in brain capillary diameter.","authors":"Sheridan M Sargent, Stephanie K Bonney, Yuandong Li, Stefan Stamenkovic, Marc M Takeno, Vanessa Coelho-Santos, Andy Y Shih","doi":"10.1530/VB-23-0010","DOIUrl":null,"url":null,"abstract":"<p><p>The high metabolic demand of brain tissue is supported by a constant supply of blood flow through dense microvascular networks. Capillaries are the smallest class of vessels in the brain and their lumens vary in diameter between ~2 and 5 μm. This diameter range plays a significant role in optimizing blood flow resistance, blood cell distribution, and oxygen extraction. The control of capillary diameter has largely been ascribed to pericyte contractility, but it remains unclear if the architecture of the endothelial wall also contributes to capillary diameter. Here, we use public, large-scale volume electron microscopy data from mouse cortex (MICrONS Explorer, Cortical mm3) to examine how endothelial cell number, endothelial cell thickness, and pericyte coverage relates to microvascular lumen size. We find that transitional vessels near the penetrating arteriole and ascending venule are composed of two to six interlocked endothelial cells, while the capillaries intervening these zones are composed of either one or two endothelial cells, with roughly equal proportions. The luminal area and diameter are on average slightly larger with capillary segments composed of two interlocked endothelial cells vs one endothelial cell. However, this difference is insufficient to explain the full range of capillary diameters seen in vivo. This suggests that both endothelial structure and other influences, including pericyte tone, contribute to the basal diameter and optimized perfusion of brain capillaries.</p>","PeriodicalId":75294,"journal":{"name":"Vascular biology (Bristol, England)","volume":"5 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10503221/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Vascular biology (Bristol, England)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1530/VB-23-0010","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/1/1 0:00:00","PubModel":"Print","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The high metabolic demand of brain tissue is supported by a constant supply of blood flow through dense microvascular networks. Capillaries are the smallest class of vessels in the brain and their lumens vary in diameter between ~2 and 5 μm. This diameter range plays a significant role in optimizing blood flow resistance, blood cell distribution, and oxygen extraction. The control of capillary diameter has largely been ascribed to pericyte contractility, but it remains unclear if the architecture of the endothelial wall also contributes to capillary diameter. Here, we use public, large-scale volume electron microscopy data from mouse cortex (MICrONS Explorer, Cortical mm3) to examine how endothelial cell number, endothelial cell thickness, and pericyte coverage relates to microvascular lumen size. We find that transitional vessels near the penetrating arteriole and ascending venule are composed of two to six interlocked endothelial cells, while the capillaries intervening these zones are composed of either one or two endothelial cells, with roughly equal proportions. The luminal area and diameter are on average slightly larger with capillary segments composed of two interlocked endothelial cells vs one endothelial cell. However, this difference is insufficient to explain the full range of capillary diameters seen in vivo. This suggests that both endothelial structure and other influences, including pericyte tone, contribute to the basal diameter and optimized perfusion of brain capillaries.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
内皮结构导致脑毛细血管直径的异质性。
脑组织的高代谢需求需要通过密集的微血管网络获得源源不断的血流供应。毛细血管是大脑中最小的一类血管,其管腔直径在 ~2 至 5 μm 之间。这一直径范围在优化血流阻力、血细胞分布和氧气提取方面发挥着重要作用。毛细血管直径的控制主要归因于周细胞的收缩力,但内皮壁的结构是否也对毛细血管直径有影响仍不清楚。在这里,我们利用公开的小鼠皮层(MICrONS Explorer, Cortical mm3)大规模体积电子显微镜数据,研究了内皮细胞数量、内皮细胞厚度和周细胞覆盖率与微血管管腔大小的关系。我们发现,穿支动脉和升支静脉附近的过渡血管由两到六个交错的内皮细胞组成,而这些区域之间的毛细血管由一个或两个内皮细胞组成,比例大致相同。由两个交错的内皮细胞组成的毛细血管段与由一个内皮细胞组成的毛细血管段相比,管腔面积和直径平均略大。然而,这种差异不足以解释体内毛细血管直径的全部范围。这表明,内皮结构和其他影响因素(包括周细胞张力)都有助于脑毛细血管的基本直径和优化灌注。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
审稿时长
13 weeks
期刊最新文献
Pharmacological and immunohistochemical characterization of dopamine D4 receptor in human umbilical artery and vein. Serum tissue plasminogen activator after cycling with blood flow restriction. Protection of liver sinusoidal endothelial cells using different preservation solutions. Lack of intracranial atherosclerosis in various atherosclerotic mouse models. Therapeutic angiogenesis for patients with chronic limb-threatening ischemia: promising or hoax?
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1