TMS must not harm participants: guidelines for evaluating TMS protocol safety.

IF 2 4区 医学 Q3 NEUROSCIENCES Cognitive Neuroscience Pub Date : 2023-01-01 Epub Date: 2023-09-14 DOI:10.1080/17588928.2023.2259553
Scott D Slotnick
{"title":"TMS must not harm participants: guidelines for evaluating TMS protocol safety.","authors":"Scott D Slotnick","doi":"10.1080/17588928.2023.2259553","DOIUrl":null,"url":null,"abstract":"<p><p>Transcranial magnetic stimulation (TMS) can modulate a targeted brain region to assess whether that region is involved in a cognitive process. When TMS is employed in cognitive neuroscience, participants are typically healthy volunteers, and the technique is described as noninvasive. However, TMS parameters can be set such that stimulation produces long-lasting effects. Critically, TMS effects that have any possibility of lasting beyond a participant's time in the lab are potentially harmful. In this editorial, evidence is considered that indicates a 20-Hz multi-day TMS protocol has long-lasting effects, and a continuous theta-burst stimulation protocol needs further testing before it is deemed noninvasive. The following guidelines are provided for TMS protocol evaluation: 1) Effects must be shown to completely dissipate before participants leave the lab by testing well beyond the expected duration. 2) Participants should complete a cognitive test battery before TMS and after the effects are expected to dissipate. 3) Protocols should not be employed that produce effects lasting longer than the time in the lab. 4) The number of participants should ensure error bars are small, and results generalize to the population. 5) Results should be assessed at the group and individual-participant level, and effects should dissipate for every participant. 6) Bayesian analysis should be conducted to evaluate evidence in favor of the null hypothesis. 7) Effects should be assessed in multiple cortical regions. It is hoped that these guidelines will be employed to ensure the continued use of TMS as a valuable tool in the field of cognitive neuroscience.</p>","PeriodicalId":10413,"journal":{"name":"Cognitive Neuroscience","volume":" ","pages":"121-126"},"PeriodicalIF":2.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cognitive Neuroscience","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/17588928.2023.2259553","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/9/14 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Transcranial magnetic stimulation (TMS) can modulate a targeted brain region to assess whether that region is involved in a cognitive process. When TMS is employed in cognitive neuroscience, participants are typically healthy volunteers, and the technique is described as noninvasive. However, TMS parameters can be set such that stimulation produces long-lasting effects. Critically, TMS effects that have any possibility of lasting beyond a participant's time in the lab are potentially harmful. In this editorial, evidence is considered that indicates a 20-Hz multi-day TMS protocol has long-lasting effects, and a continuous theta-burst stimulation protocol needs further testing before it is deemed noninvasive. The following guidelines are provided for TMS protocol evaluation: 1) Effects must be shown to completely dissipate before participants leave the lab by testing well beyond the expected duration. 2) Participants should complete a cognitive test battery before TMS and after the effects are expected to dissipate. 3) Protocols should not be employed that produce effects lasting longer than the time in the lab. 4) The number of participants should ensure error bars are small, and results generalize to the population. 5) Results should be assessed at the group and individual-participant level, and effects should dissipate for every participant. 6) Bayesian analysis should be conducted to evaluate evidence in favor of the null hypothesis. 7) Effects should be assessed in multiple cortical regions. It is hoped that these guidelines will be employed to ensure the continued use of TMS as a valuable tool in the field of cognitive neuroscience.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
TMS不得伤害参与者:TMS协议安全性评估指南。
经颅磁刺激(TMS)可以调节靶向大脑区域,以评估该区域是否参与认知过程。当TMS用于认知神经科学时,参与者通常是健康的志愿者,该技术被描述为非侵入性的。然而,TMS参数可以设置为使得刺激产生持久的效果。至关重要的是,TMS效应有可能持续超过参与者在实验室的时间,这是潜在的有害影响。在这篇社论中,有证据表明,20赫兹的多日TMS方案具有持久的效果,而连续θ突发刺激方案在被认为是非侵入性的之前需要进一步测试。为TMS方案评估提供了以下指南:1)在参与者离开实验室之前,必须通过测试远远超过预期持续时间来证明效果完全消散。2) 参与者应在TMS之前和预期效果消散之后完成认知测试。3) 不应使用产生比实验室时间更长的效果的协议。4)参与者的数量应确保误差条较小,结果应推广到人群中。5) 结果应在小组和个人参与者层面进行评估,影响应在每个参与者身上消散。6) 应该进行贝叶斯分析来评估有利于零假设的证据。7) 应评估多个皮质区域的影响。希望这些指南将被用于确保TMS作为认知神经科学领域的一种有价值的工具的持续使用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Cognitive Neuroscience
Cognitive Neuroscience NEUROSCIENCES-
CiteScore
3.60
自引率
0.00%
发文量
27
审稿时长
>12 weeks
期刊介绍: Cognitive Neuroscience publishes high quality discussion papers and empirical papers on any topic in the field of cognitive neuroscience including perception, attention, memory, language, action, social cognition, and executive function. The journal covers findings based on a variety of techniques such as fMRI, ERPs, MEG, TMS, and focal lesion studies. Contributions that employ or discuss multiple techniques to shed light on the spatial-temporal brain mechanisms underlying a cognitive process are encouraged.
期刊最新文献
Visuo-spatial working memory abilities modulate mental rotation: Evidence from event-related potentials. Theoretical strategies for an embodied cognitive neuroscience: Mechanistic explanations of brain-body-environment systems. Beyond embodiment: Rethinking the integration of cognitive neuroscience and mechanistic explanations. Embodied (4EA) cognitive computational neuroscience. How to build a better 4E cognition.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1