Genealogical characterization of regional populations and dorsal coat color variation in the house mouse Mus musculus from Asia based on haplotype structure analysis of a gene-rich region harboring Mc1r.
{"title":"Genealogical characterization of regional populations and dorsal coat color variation in the house mouse Mus musculus from Asia based on haplotype structure analysis of a gene-rich region harboring Mc1r.","authors":"Kazuhiro Zakoh, Kazumichi Fujiwara, Toyoyuki Takada, Naoki Osada, Hitoshi Suzuki","doi":"10.1266/ggs.22-00157","DOIUrl":null,"url":null,"abstract":"<p><p>We analyzed 196 haplotype sequences from a gene-rich region (250 kb) that includes Mc1r, a gene involved in coat color regulation, to gain insight into the evolution of coat color variation in subspecies of the house mouse Mus musculus. Phylogenetic networks revealed haplotype groups from the major subspecies of M. m. castaneus (CAS), M. m. domesticus (DOM), and M. m. musculus (MUS). Using haplotype sequences assigned to each of CAS and MUS through phylogenetic analysis, we proposed migration routes associated with prehistoric humans from west to east across Eurasia. Comparing nucleotide diversity among subspecies-specific haplotypes in different geographic areas showed a marked reduction during migration, particularly in MUS-derived haplotypes from Korea and Japan, suggesting intensive population bottlenecks during migration. We found that a C>T polymorphism at site 302 (c.302C>T) in the Mc1r coding region correlated with a darkening of dorsal fur color in both CAS and MUS. However, C/C homozygous mice in MUS showed marked variation in lightness, indicating the possibility of another genetic determinant that affects the lightness of dorsal fur color. Detailed sequence comparisons of haplotypes revealed that short fragments assigned to DOM were embedded in CAS-assigned fragments, indicating ancient introgression between subspecies. The estimated age of c.302C>T also supports the hypothesis that genetic interaction between subspecies occurred in ancient times. This suggests that the genome of M. musculus evolved through gene flow between subspecies over an extended period before the movement of the species in conjunction with prehistoric humans.</p>","PeriodicalId":12690,"journal":{"name":"Genes & genetic systems","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2023-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Genes & genetic systems","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1266/ggs.22-00157","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/8/8 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
We analyzed 196 haplotype sequences from a gene-rich region (250 kb) that includes Mc1r, a gene involved in coat color regulation, to gain insight into the evolution of coat color variation in subspecies of the house mouse Mus musculus. Phylogenetic networks revealed haplotype groups from the major subspecies of M. m. castaneus (CAS), M. m. domesticus (DOM), and M. m. musculus (MUS). Using haplotype sequences assigned to each of CAS and MUS through phylogenetic analysis, we proposed migration routes associated with prehistoric humans from west to east across Eurasia. Comparing nucleotide diversity among subspecies-specific haplotypes in different geographic areas showed a marked reduction during migration, particularly in MUS-derived haplotypes from Korea and Japan, suggesting intensive population bottlenecks during migration. We found that a C>T polymorphism at site 302 (c.302C>T) in the Mc1r coding region correlated with a darkening of dorsal fur color in both CAS and MUS. However, C/C homozygous mice in MUS showed marked variation in lightness, indicating the possibility of another genetic determinant that affects the lightness of dorsal fur color. Detailed sequence comparisons of haplotypes revealed that short fragments assigned to DOM were embedded in CAS-assigned fragments, indicating ancient introgression between subspecies. The estimated age of c.302C>T also supports the hypothesis that genetic interaction between subspecies occurred in ancient times. This suggests that the genome of M. musculus evolved through gene flow between subspecies over an extended period before the movement of the species in conjunction with prehistoric humans.
我们分析了一个基因丰富区域(250 kb)的 196 个单倍型序列,其中包括参与毛色调控的基因 Mc1r,以深入了解家鼠麝亚种的毛色变异进化。系统发生网络揭示了M. m. castaneus(CAS)、M. m. domesticus(DOM)和M. m. musculus(MUS)等主要亚种的单倍型群。通过系统发育分析,我们利用分配给 CAS 和 MUS 的单倍型序列,提出了史前人类从西向东横跨欧亚大陆的迁徙路线。比较不同地理区域亚种特异性单倍型的核苷酸多样性发现,在迁徙过程中,尤其是来自韩国和日本的MUS单倍型的核苷酸多样性明显减少,这表明在迁徙过程中出现了密集的种群瓶颈。我们发现,Mc1r编码区302位点的C>T多态性(c.302C>T)与CAS和MUS背毛颜色变深有关。然而,MUS中的C/C同源小鼠在毛色浅淡方面表现出明显的差异,这表明可能存在另一种影响背毛颜色浅淡的遗传决定因素。单倍型的详细序列比较显示,分配给 DOM 的短片段嵌入了分配给 CAS 的片段中,这表明亚种之间存在古老的引入。c.302C>T的估计年龄也支持亚种之间的遗传变异发生在远古时代的假设。这表明麝香鹿的基因组是在该物种与史前人类一起迁徙之前的一段较长时期内通过亚种间的基因流动进化而来的。