Metabolomic-genomic prediction can improve prediction accuracy of breeding values for malting quality traits in barley.

IF 3.6 1区 农林科学 Q1 AGRICULTURE, DAIRY & ANIMAL SCIENCE Genetics Selection Evolution Pub Date : 2023-09-05 DOI:10.1186/s12711-023-00835-w
Xiangyu Guo, Pernille Sarup, Ahmed Jahoor, Just Jensen, Ole F Christensen
{"title":"Metabolomic-genomic prediction can improve prediction accuracy of breeding values for malting quality traits in barley.","authors":"Xiangyu Guo, Pernille Sarup, Ahmed Jahoor, Just Jensen, Ole F Christensen","doi":"10.1186/s12711-023-00835-w","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Metabolomics measures an intermediate stage between genotype and phenotype, and may therefore be useful for breeding. Our objectives were to investigate genetic parameters and accuracies of predicted breeding values for malting quality (MQ) traits when integrating both genomic and metabolomic information. In total, 2430 plots of 562 malting spring barley lines from three years and two locations were included. Five MQ traits were measured in wort produced from each plot. Metabolomic features used were 24,018 nuclear magnetic resonance intensities measured on each wort sample. Methods for statistical analyses were genomic best linear unbiased prediction (GBLUP) and metabolomic-genomic best linear unbiased prediction (MGBLUP). Accuracies of predicted breeding values were compared using two cross-validation strategies: leave-one-year-out (LOYO) and leave-one-line-out (LOLO), and the increase in accuracy from the successive inclusion of first, metabolomic data on the lines in the validation population (VP), and second, both metabolomic data and phenotypes on the lines in the VP, was investigated using the linear regression (LR) method.</p><p><strong>Results: </strong>For all traits, we saw that the metabolome-mediated heritability was substantial. Cross-validation results showed that, in general, prediction accuracies from MGBLUP and GBLUP were similar when phenotypes and metabolomic data were recorded on the same plots. Results from the LR method showed that for all traits, except one, accuracy of MGBLUP increased when including metabolomic data on the lines of the VP, and further increased when including also phenotypes. However, in general the increase in accuracy of MGBLUP when including both metabolomic data and phenotypes on lines of the VP was similar to the increase in accuracy of GBLUP when including phenotypes on the lines of the VP. Therefore, we found that, when metabolomic data were included on the lines of the VP, accuracies substantially increased for lines without phenotypic records, but they did not increase much when phenotypes were already known.</p><p><strong>Conclusions: </strong>MGBLUP is a useful approach to combine phenotypic, genomic and metabolomic data for predicting breeding values for MQ traits. We believe that our results have significant implications for practical breeding of barley and potentially many other species.</p>","PeriodicalId":55120,"journal":{"name":"Genetics Selection Evolution","volume":null,"pages":null},"PeriodicalIF":3.6000,"publicationDate":"2023-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10478459/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Genetics Selection Evolution","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s12711-023-00835-w","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRICULTURE, DAIRY & ANIMAL SCIENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Metabolomics measures an intermediate stage between genotype and phenotype, and may therefore be useful for breeding. Our objectives were to investigate genetic parameters and accuracies of predicted breeding values for malting quality (MQ) traits when integrating both genomic and metabolomic information. In total, 2430 plots of 562 malting spring barley lines from three years and two locations were included. Five MQ traits were measured in wort produced from each plot. Metabolomic features used were 24,018 nuclear magnetic resonance intensities measured on each wort sample. Methods for statistical analyses were genomic best linear unbiased prediction (GBLUP) and metabolomic-genomic best linear unbiased prediction (MGBLUP). Accuracies of predicted breeding values were compared using two cross-validation strategies: leave-one-year-out (LOYO) and leave-one-line-out (LOLO), and the increase in accuracy from the successive inclusion of first, metabolomic data on the lines in the validation population (VP), and second, both metabolomic data and phenotypes on the lines in the VP, was investigated using the linear regression (LR) method.

Results: For all traits, we saw that the metabolome-mediated heritability was substantial. Cross-validation results showed that, in general, prediction accuracies from MGBLUP and GBLUP were similar when phenotypes and metabolomic data were recorded on the same plots. Results from the LR method showed that for all traits, except one, accuracy of MGBLUP increased when including metabolomic data on the lines of the VP, and further increased when including also phenotypes. However, in general the increase in accuracy of MGBLUP when including both metabolomic data and phenotypes on lines of the VP was similar to the increase in accuracy of GBLUP when including phenotypes on the lines of the VP. Therefore, we found that, when metabolomic data were included on the lines of the VP, accuracies substantially increased for lines without phenotypic records, but they did not increase much when phenotypes were already known.

Conclusions: MGBLUP is a useful approach to combine phenotypic, genomic and metabolomic data for predicting breeding values for MQ traits. We believe that our results have significant implications for practical breeding of barley and potentially many other species.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
代谢组学-基因组学预测可以提高大麦麦芽品质性状的育种价值预测精度。
背景:代谢组学测量基因型和表型之间的中间阶段,因此可能对育种有用。我们的目的是在整合基因组和代谢组学信息的情况下,研究遗传参数和预测麦芽品质(MQ)性状育种值的准确性。共纳入3年、2个地点的562株春大麦品系2430块。在每个小区生产的麦汁中测量了5个MQ性状。代谢组学特征是在每个麦汁样本上测量24,018个核磁共振强度。统计分析方法为基因组最佳线性无偏预测(GBLUP)和代谢组-基因组最佳线性无偏预测(MGBLUP)。采用隔年(LOYO)和隔行(LOLO)两种交叉验证策略比较了预测育种值的准确性,并利用线性回归(LR)方法研究了连续纳入验证群体(VP)中株系的代谢组学数据和表型对准确性的提高。结果:对于所有性状,我们看到代谢组介导的遗传力是可观的。交叉验证结果表明,一般来说,当表型和代谢组学数据记录在同一地块上时,MGBLUP和GBLUP的预测准确性相似。LR方法的结果表明,除了1个性状外,所有性状的MGBLUP准确性在包括VP系上的代谢组学数据时都有所提高,在包括所有表型时进一步提高。然而,总的来说,当同时包括代谢组学数据和VP细胞系表型时,MGBLUP准确性的增加与GBLUP包括VP细胞系表型时准确性的增加相似。因此,我们发现,当代谢组学数据包含在VP的细胞系上时,没有表型记录的细胞系的准确性大大提高,但当表型已经已知时,准确性并没有增加太多。结论:MGBLUP是一种结合表型、基因组和代谢组学数据预测MQ性状育种价值的有效方法。我们相信我们的结果对大麦和潜在的许多其他物种的实际育种具有重要意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Genetics Selection Evolution
Genetics Selection Evolution 生物-奶制品与动物科学
CiteScore
6.50
自引率
9.80%
发文量
74
审稿时长
1 months
期刊介绍: Genetics Selection Evolution invites basic, applied and methodological content that will aid the current understanding and the utilization of genetic variability in domestic animal species. Although the focus is on domestic animal species, research on other species is invited if it contributes to the understanding of the use of genetic variability in domestic animals. Genetics Selection Evolution publishes results from all levels of study, from the gene to the quantitative trait, from the individual to the population, the breed or the species. Contributions concerning both the biological approach, from molecular genetics to quantitative genetics, as well as the mathematical approach, from population genetics to statistics, are welcome. Specific areas of interest include but are not limited to: gene and QTL identification, mapping and characterization, analysis of new phenotypes, high-throughput SNP data analysis, functional genomics, cytogenetics, genetic diversity of populations and breeds, genetic evaluation, applied and experimental selection, genomic selection, selection efficiency, and statistical methodology for the genetic analysis of phenotypes with quantitative and mixed inheritance.
期刊最新文献
Genotyping both live and dead animals to improve post-weaning survival of pigs in breeding programs A comprehensive atlas of nuclear sequences of mitochondrial origin (NUMT) inserted into the pig genome Mitochondrial sequence variants: testing imputation accuracy and their association with dairy cattle milk traits Genetic parameters and genotype-by-environment interaction estimates for growth and feed efficiency related traits in Chinook salmon, Oncorhynchus tshawytscha, reared under low and moderate flow regimes Segregation GWAS to linearize a non-additive locus with incomplete penetrance: an example of horn status in sheep
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1