Effect of a new sustainable cooling system used during firming and brining on the microbiological, chemical, and sensory characteristics of buffalo mozzarella cheese.
Marika Di Paolo, Martina De Stefano, Giulia Polizzi, Valeria Vuoso, Adriano Michele Luigi Santoro, Aniello Anastasio, Raffaele Marrone
{"title":"Effect of a new sustainable cooling system used during firming and brining on the microbiological, chemical, and sensory characteristics of buffalo mozzarella cheese.","authors":"Marika Di Paolo, Martina De Stefano, Giulia Polizzi, Valeria Vuoso, Adriano Michele Luigi Santoro, Aniello Anastasio, Raffaele Marrone","doi":"10.4081/ijfs.2023.11290","DOIUrl":null,"url":null,"abstract":"<p><p>The cooling applied during the firming and brining processes represents an important production step in mozzarella cheese-making. The temperature fluctuations of the cooling water can negatively affect the hygiene, composition, and quality of mozzarella. Some sustainable cooling systems can minimize this problem by using hot process fluids as heat sources to generate refrigerated energy. This study aimed to evaluate the effects of a new cooling system equipped with a water-ammonia absorption chiller (MA) on the characteristics of buffalo mozzarella through a comparative study with products cooled with a traditional ice water chiller (MT). The buffalo mozzarella cheese manufacture was monitored, and the samples were analyzed for chemical, nutritional, microbiological, and sensory characteristics. The MT samples showed an overall weight loss of 7.4% compared to an average of 2.8% for the MA samples. The MT samples were characterized by greater sapidity than the MA ones, which instead showed a higher moisture content that increased juiciness. The microbiological analysis showed a lower concentration of mesophilic bacterial load in the MA samples than in the MT ones [difference of 1 Log (CFU/g)], which is probably due to the low and constant temperatures that reduced the permanence time of the mozzarella in the vats (firming and brining). This study represents a preliminary positive evaluation of the use of this sustainable cooling system for mozzarella cheese, which is useful for dairy plants with an annual cheese production volume sufficient to justify the operating cost of the plant and the annual energy cost.</p>","PeriodicalId":14508,"journal":{"name":"Italian Journal of Food Safety","volume":"12 3","pages":"11290"},"PeriodicalIF":1.8000,"publicationDate":"2023-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/14/33/ijfs-12-3-11290.PMC10480932.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Italian Journal of Food Safety","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4081/ijfs.2023.11290","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The cooling applied during the firming and brining processes represents an important production step in mozzarella cheese-making. The temperature fluctuations of the cooling water can negatively affect the hygiene, composition, and quality of mozzarella. Some sustainable cooling systems can minimize this problem by using hot process fluids as heat sources to generate refrigerated energy. This study aimed to evaluate the effects of a new cooling system equipped with a water-ammonia absorption chiller (MA) on the characteristics of buffalo mozzarella through a comparative study with products cooled with a traditional ice water chiller (MT). The buffalo mozzarella cheese manufacture was monitored, and the samples were analyzed for chemical, nutritional, microbiological, and sensory characteristics. The MT samples showed an overall weight loss of 7.4% compared to an average of 2.8% for the MA samples. The MT samples were characterized by greater sapidity than the MA ones, which instead showed a higher moisture content that increased juiciness. The microbiological analysis showed a lower concentration of mesophilic bacterial load in the MA samples than in the MT ones [difference of 1 Log (CFU/g)], which is probably due to the low and constant temperatures that reduced the permanence time of the mozzarella in the vats (firming and brining). This study represents a preliminary positive evaluation of the use of this sustainable cooling system for mozzarella cheese, which is useful for dairy plants with an annual cheese production volume sufficient to justify the operating cost of the plant and the annual energy cost.
期刊介绍:
The Journal of Food Safety (IJFS) is the official journal of the Italian Association of Veterinary Food Hygienists (AIVI). The Journal addresses veterinary food hygienists, specialists in the food industry and experts offering technical support and advice on food of animal origin. The Journal of Food Safety publishes original research papers concerning food safety and hygiene, animal health, zoonoses and food safety, food safety economics. Reviews, editorials, technical reports, brief notes, conference proceedings, letters to the Editor, book reviews are also welcome. Every article published in the Journal will be peer-reviewed by experts in the field and selected by members of the editorial board. The publication of manuscripts is subject to the approval of the Editor who has knowledge of the field discussed in the manuscript in accordance with the principles of Peer Review; referees will be selected from the Editorial Board or among qualified scientists of the international scientific community. Articles must be written in English and must adhere to the guidelines and details contained in the Instructions to Authors.