Lillemor Örebrand, Max Bäckman, Oscar Björnham, Marianne Thunéll, Andreas Fredman, Niklas Brännström
{"title":"Quantitative Evaluation of Single-Use Particle Filtering Half Masks for SARS-CoV-2 Protection.","authors":"Lillemor Örebrand, Max Bäckman, Oscar Björnham, Marianne Thunéll, Andreas Fredman, Niklas Brännström","doi":"10.1089/apb.2020.0082","DOIUrl":null,"url":null,"abstract":"<p><p><b>Background:</b> The SARS-CoV-2 pandemic put the entire healthcare sector under severe strain due to shortages of personal protection equipment. A large number of new filtering mask models were introduced on the market, claiming effectiveness that had undergone little or no objective and reliable verifications. <b>Methods and Materials:</b> Filter materials were tested against sodium chloride particles according to the EN149 §7.9.2 standard for particle penetration. Particle counters were used to measure the particle penetration of the filtering mask models, resolved over sizes in the range of 27-1000 nm. <b>Results:</b> We report on the results for 86 different filtering mask models. The majority of the tested models showed <3% penetration, whereas almost one third (i.e., 27 of 86) of the models performed poorly. <b>Discussion:</b> Interestingly, the poorest performing masks showed a tendency to have worse filtering effectiveness for larger particles than for smaller sized particles, following the opposite tendency of the best filtering masks. <b>Conclusion:</b> Almost one third of the filtering mask models tested failed the specified pass criteria as specified in the temporary EU COVID-19 standard. This fact, and the high health risks of COVID-19, highlights the need for independent testing.</p>","PeriodicalId":7962,"journal":{"name":"Applied Biosafety","volume":"26 2","pages":"58-65"},"PeriodicalIF":0.5000,"publicationDate":"2021-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/83/fa/apb.2020.0082.PMC9134329.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Biosafety","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1089/apb.2020.0082","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PUBLIC, ENVIRONMENTAL & OCCUPATIONAL HEALTH","Score":null,"Total":0}
引用次数: 0
Abstract
Background: The SARS-CoV-2 pandemic put the entire healthcare sector under severe strain due to shortages of personal protection equipment. A large number of new filtering mask models were introduced on the market, claiming effectiveness that had undergone little or no objective and reliable verifications. Methods and Materials: Filter materials were tested against sodium chloride particles according to the EN149 §7.9.2 standard for particle penetration. Particle counters were used to measure the particle penetration of the filtering mask models, resolved over sizes in the range of 27-1000 nm. Results: We report on the results for 86 different filtering mask models. The majority of the tested models showed <3% penetration, whereas almost one third (i.e., 27 of 86) of the models performed poorly. Discussion: Interestingly, the poorest performing masks showed a tendency to have worse filtering effectiveness for larger particles than for smaller sized particles, following the opposite tendency of the best filtering masks. Conclusion: Almost one third of the filtering mask models tested failed the specified pass criteria as specified in the temporary EU COVID-19 standard. This fact, and the high health risks of COVID-19, highlights the need for independent testing.
Applied BiosafetyEnvironmental Science-Management, Monitoring, Policy and Law
CiteScore
2.50
自引率
13.30%
发文量
27
期刊介绍:
Applied Biosafety (APB), sponsored by ABSA International, is a peer-reviewed, scientific journal committed to promoting global biosafety awareness and best practices to prevent occupational exposures and adverse environmental impacts related to biohazardous releases. APB provides a forum for exchanging sound biosafety and biosecurity initiatives by publishing original articles, review articles, letters to the editors, commentaries, and brief reviews. APB informs scientists, safety professionals, policymakers, engineers, architects, and governmental organizations. The journal is committed to publishing on topics significant in well-resourced countries as well as information relevant to underserved regions, engaging and cultivating the development of biosafety professionals globally.