Jeong Hoon Jang, Changgee Chang, Amita K Manatunga, Andrew T Taylor, Qi Long
{"title":"An integrative latent class model of heterogeneous data modalities for diagnosing kidney obstruction.","authors":"Jeong Hoon Jang, Changgee Chang, Amita K Manatunga, Andrew T Taylor, Qi Long","doi":"10.1093/biostatistics/kxad020","DOIUrl":null,"url":null,"abstract":"<p><p>Radionuclide imaging plays a critical role in the diagnosis and management of kidney obstruction. However, most practicing radiologists in US hospitals have insufficient time and resources to acquire training and experience needed to interpret radionuclide images, leading to increased diagnostic errors. To tackle this problem, Emory University embarked on a study that aims to develop a computer-assisted diagnostic (CAD) tool for kidney obstruction by mining and analyzing patient data comprised of renogram curves, ordinal expert ratings on the obstruction status, pharmacokinetic variables, and demographic information. The major challenges here are the heterogeneity in data modes and the lack of gold standard for determining kidney obstruction. In this article, we develop a statistically principled CAD tool based on an integrative latent class model that leverages heterogeneous data modalities available for each patient to provide accurate prediction of kidney obstruction. Our integrative model consists of three sub-models (multilevel functional latent factor regression model, probit scalar-on-function regression model, and Gaussian mixture model), each of which is tailored to the specific data mode and depends on the unknown obstruction status (latent class). An efficient MCMC algorithm is developed to train the model and predict kidney obstruction with associated uncertainty. Extensive simulations are conducted to evaluate the performance of the proposed method. An application to an Emory renal study demonstrates the usefulness of our model as a CAD tool for kidney obstruction.</p>","PeriodicalId":55357,"journal":{"name":"Biostatistics","volume":" ","pages":"769-785"},"PeriodicalIF":1.8000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11247177/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biostatistics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1093/biostatistics/kxad020","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Radionuclide imaging plays a critical role in the diagnosis and management of kidney obstruction. However, most practicing radiologists in US hospitals have insufficient time and resources to acquire training and experience needed to interpret radionuclide images, leading to increased diagnostic errors. To tackle this problem, Emory University embarked on a study that aims to develop a computer-assisted diagnostic (CAD) tool for kidney obstruction by mining and analyzing patient data comprised of renogram curves, ordinal expert ratings on the obstruction status, pharmacokinetic variables, and demographic information. The major challenges here are the heterogeneity in data modes and the lack of gold standard for determining kidney obstruction. In this article, we develop a statistically principled CAD tool based on an integrative latent class model that leverages heterogeneous data modalities available for each patient to provide accurate prediction of kidney obstruction. Our integrative model consists of three sub-models (multilevel functional latent factor regression model, probit scalar-on-function regression model, and Gaussian mixture model), each of which is tailored to the specific data mode and depends on the unknown obstruction status (latent class). An efficient MCMC algorithm is developed to train the model and predict kidney obstruction with associated uncertainty. Extensive simulations are conducted to evaluate the performance of the proposed method. An application to an Emory renal study demonstrates the usefulness of our model as a CAD tool for kidney obstruction.
期刊介绍:
Among the important scientific developments of the 20th century is the explosive growth in statistical reasoning and methods for application to studies of human health. Examples include developments in likelihood methods for inference, epidemiologic statistics, clinical trials, survival analysis, and statistical genetics. Substantive problems in public health and biomedical research have fueled the development of statistical methods, which in turn have improved our ability to draw valid inferences from data. The objective of Biostatistics is to advance statistical science and its application to problems of human health and disease, with the ultimate goal of advancing the public''s health.