Exposure to the anti-microbial chemical triclosan disrupts keratinocyte function and skin integrity in a model of reconstructed human epidermis.

IF 2.4 4区 医学 Q3 TOXICOLOGY Journal of Immunotoxicology Pub Date : 2023-12-01 DOI:10.1080/1547691X.2022.2148781
Rachel Baur, Michael Kashon, Ewa Lukomska, Lisa M Weatherly, Hillary L Shane, Stacey E Anderson
{"title":"Exposure to the anti-microbial chemical triclosan disrupts keratinocyte function and skin integrity in a model of reconstructed human epidermis.","authors":"Rachel Baur, Michael Kashon, Ewa Lukomska, Lisa M Weatherly, Hillary L Shane, Stacey E Anderson","doi":"10.1080/1547691X.2022.2148781","DOIUrl":null,"url":null,"abstract":"<p><p>Triclosan is an anti-microbial chemical incorporated into products that are applied to the skin of healthcare workers. Exposure to triclosan has previously been shown to be associated with allergic disease in humans and impact the immune responses in animal models. Additionally, studies have shown that exposure to triclosan dermally activates the NLRP3 inflammasome and disrupts the skin barrier integrity in mice. The skin is the largest organ of the body and plays an important role as a physical barrier and regulator of the immune system. Alterations in the barrier and immune regulatory functions of the skin have been demonstrated to increase the risk of sensitization and development of allergic disease. In this study, the impact of triclosan exposure on the skin barrier and keratinocyte function was investigated using a model of reconstructed human epidermis. The apical surface of reconstructed human epidermis was exposed to triclosan (0.05-0.2%) once for 6, 24, or 48 h or daily for 5 consecutive days. Exposure to triclosan increased epidermal permeability and altered the expression of genes involved in formation of the skin barrier. Additionally, exposure to triclosan altered the expression patterns of several cytokines and growth factors. Together, these results suggest that exposure to triclosan impacts skin barrier integrity and function of human keratinocytes and suggests that these alterations may impact immune regulation.</p>","PeriodicalId":16073,"journal":{"name":"Journal of Immunotoxicology","volume":"20 1","pages":"1-11"},"PeriodicalIF":2.4000,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10364087/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Immunotoxicology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/1547691X.2022.2148781","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"TOXICOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Triclosan is an anti-microbial chemical incorporated into products that are applied to the skin of healthcare workers. Exposure to triclosan has previously been shown to be associated with allergic disease in humans and impact the immune responses in animal models. Additionally, studies have shown that exposure to triclosan dermally activates the NLRP3 inflammasome and disrupts the skin barrier integrity in mice. The skin is the largest organ of the body and plays an important role as a physical barrier and regulator of the immune system. Alterations in the barrier and immune regulatory functions of the skin have been demonstrated to increase the risk of sensitization and development of allergic disease. In this study, the impact of triclosan exposure on the skin barrier and keratinocyte function was investigated using a model of reconstructed human epidermis. The apical surface of reconstructed human epidermis was exposed to triclosan (0.05-0.2%) once for 6, 24, or 48 h or daily for 5 consecutive days. Exposure to triclosan increased epidermal permeability and altered the expression of genes involved in formation of the skin barrier. Additionally, exposure to triclosan altered the expression patterns of several cytokines and growth factors. Together, these results suggest that exposure to triclosan impacts skin barrier integrity and function of human keratinocytes and suggests that these alterations may impact immune regulation.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
暴露于抗微生物化学三氯生破坏角化细胞功能和皮肤完整性的重建人类表皮模型。
三氯生是一种抗微生物化学物质,被用于医疗工作者的皮肤。接触三氯生之前已被证明与人类过敏性疾病有关,并影响动物模型的免疫反应。此外,研究表明,暴露于三氯生可通过皮肤激活NLRP3炎症小体,并破坏小鼠的皮肤屏障完整性。皮肤是身体最大的器官,作为免疫系统的物理屏障和调节器发挥着重要作用。皮肤屏障和免疫调节功能的改变已被证明会增加致敏和发展为过敏性疾病的风险。在本研究中,使用重建的人类表皮模型研究了三氯生暴露对皮肤屏障和角质形成细胞功能的影响。重建的人表皮的顶端表面暴露于三氯生(0.05-0.2%)一次,持续6、24或48 h或连续5天每天。接触三氯生会增加表皮通透性,并改变参与皮肤屏障形成的基因的表达。此外,暴露于三氯生改变了几种细胞因子和生长因子的表达模式。总之,这些结果表明,暴露于三氯生会影响皮肤屏障的完整性和人类角质形成细胞的功能,并表明这些变化可能会影响免疫调节。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Immunotoxicology
Journal of Immunotoxicology 医学-毒理学
CiteScore
6.70
自引率
3.00%
发文量
26
审稿时长
1 months
期刊介绍: The Journal of Immunotoxicology is an open access, peer-reviewed journal that provides a needed singular forum for the international community of immunotoxicologists, immunologists, and toxicologists working in academia, government, consulting, and industry to both publish their original research and be made aware of the research findings of their colleagues in a timely manner. Research from many subdisciplines are presented in the journal, including the areas of molecular, developmental, pulmonary, regulatory, nutritional, mechanistic, wildlife, and environmental immunotoxicology, immunology, and toxicology. Original research articles as well as timely comprehensive reviews are published.
期刊最新文献
Investigation into changes in inflammatory and immune cell markers in pre-diabetic patients from Durban, South Africa. Identification and semi-quantification of protein allergens in complex mixtures using proteomic and AllerCatPro 2.0 bioinformatic analyses: a proof-of-concept investigation. Lung-delivered IL-10 therapy elicits beneficial effects via immune modulation in organic dust exposure-induced lung inflammation. Per- and polyfluoroalkyl substances alter innate immune function: evidence and data gaps. Binary and quaternary mixtures of perfluoroalkyl substances (PFAS) differentially affect the immune response to influenza A virus infection.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1